
Think openly, build securely

Specifying and Testing

PQC Hardware Modules

Senior Cryptography Engineer, PQShield Ltd. (UK)
Dr. Markku-Juhani O. Saarinen

 ECW “Implementing PQC” Workshop
Rennes, France - November 18, 2021

© 2021 PQShield Ltd. PUBLIC

First Some Announcements
In RISC-V Board of Directors Meeting 18-Nov-2021

- Ratification of Zkn + Zks scalar (= non-vector) cryptography extensions: Lightweight
AES, SHA, SM3, SM4 + bit manipulation instructions for RV32 and RV64.

- Zkt data-independent latency instruction set (for constant-time cryptography).

- Zkr physical entropy source extension (for building random bit generators.)

- Largely contributed to CETG/RISC-V standardization by PQShield (myself and Ben
Marshall, the editor of RISC-V Crypto Spec). See our papers in CHES 21, ASHES 20, etc.

These are on agenda to be ratified today as a part of the official RISC-V ISA.

Motivation: Requirement Specifications

“Are the basic features of a PQC hardware module the same as for, say, RSA?”
(Not really.)

“Acceptance tests: How do I make sure that the implementation is correct?”
(Test vectors + failure tests. Formal models.)

“Vendor claims side-channel security. How can I verify that to be true?”
(There are fairly standard tests for basic side-channel security.)

We hope that FIPS 140-3 will eventually answer many of these questions for NIST PQC
hardware modules. Currently we can just propose “industry best practices” for them.

© 2021 PQShield Ltd. PUBLIC

NIST Post-Quantum Cryptography
New Public-Key Cryptography Standards

(SP 800-208) Hash-Based Signature: LMS / HSS, XMSS / XMSSMT.

(NIST Finalists) Key Establishment: KYBER, NTRU, SABER, McEliece.

(NIST Finalists) Digital Signature: DILITHIUM, FALCON, Rainbow.

Timeline situation (November 2021):
➔ October 2020: NIST SP 800-208 “Recommendation for Stateful Hash-Based Signature Schemes.“
➔ 2020 NSA: Indicated choosing from the NIST PQC (HBS and Lattice PQC) into CNSA/NSS.
➔ 2021 NIST: PQC algorithms chosen for standardization at the end of 2021 / early 2022.

© 2021 PQShield Ltd. PUBLIC

Outline: Notes for PQC Reqspecs

What can I ask for.. before FIPS 140 & NIAP covers PQC ?

1. Hash-Based Signatures (HBS) for Firmware Updates.

2. PQC KEMs: Basic low-level API and Functional Testing.

3. PQC Signatures: Basic low-level API and Functional Testing.

4. Formal Property Verification in PQC engineering.

5. TVLA / ISO 17825: “Industry standard” for Side-Channel testing.

© 2021 PQShield Ltd. PUBLIC

NIST SP 800-208 (October 2020)
Stateful Signature Algorithms LMS, HSS, XMSS, XMSSMT

- Refers to RFC 8554 (LMS/HSS) and RFC 8391 (XMSS), some parameter changes.

- Entirely based on SHA-2 or SHA-3 hash functions. Post-quantum secure (~Grover).

- Stateful: Private key supports a limited number (210 ,216, .. , 240) of one-time
signatures. (In many implementations the “state” can be just a non-secret signature
index 1,2,3.. You just need to have a design guarantee that no OTS index is used twice.)

- Verification is unlimited; just needs an approx. 64-byte public key, 2 kB+ signature.

Typical use case: Integrity checking, future-proofed firmware updates.

© 2021 PQShield Ltd. PUBLIC

NIST SP 800-208, LMS SHA-256/192
A “Preferred Choice” for National Security Systems Firmware

My understanding of the testing situation: Just check against the reference code
- LMS (Leighton-Micali Signature) is not available in FIPS Automated Testing (ACVTS),

but SHA-256 of course is. The standard refers to RFC 8554 for algorithm specification.
- RFC 8554 does not discuss the 192-bit truncated version, but has test vectors for

LM_SHA256_M32_H5, LMOTS_SHA256_N32_W4, and LMOTS_SHA256_N32_W8.
- SP 800-208, Section 8.1: FIPS 140-3 at Level 3+ requires that an HSM is used for key

generation and signature, “No secret key import or export possible!”

© 2021 PQShield Ltd. PUBLIC

NSA Quantum Computing and Post-Quantum Cryptography FAQs in August 2021:

LMS and Hash Based Signatures
Current Practical Approach

- If you need more than 225 signatures total, HSS is just a hierarchical way of using LMS
parameters more than once, so should be fine. HSS also has faster key generation and
signing (LMS_SHA256_M24_H25 keygen or first sign is about 237 ops; many hours.)

- Add a “Winternitz mode” to a hardware SHA module to do LMS/HSS more efficiently
by streamlining padding & iteration (no need to move data to back and forth to CPU).

- Business continuity and FW Updates: Consider having mitigating risk controls against
Sect. 8.1 physical FIPS requirements; It may be better to implement layered physical
security and document operational procedures for key backups and disaster recovery.

- (We’re aiming to FIPS 140-3 validate LMS/HSS signature verification module only. LMS
verification is simple and robust: The control firmware is only few hundred lines.)

© 2021 PQShield Ltd. PUBLIC

Outline: Notes for PQC Reqspecs

What can I ask for.. before FIPS 140 & NIAP covers PQC ?

1. Hash-Based Signatures (HBS) for Firmware Updates.

2. PQC KEMs: Basic low-level API and Functional Testing.

3. PQC Signatures: Basic low-level API and Functional Testing.

4. Formal Property Verification in PQC engineering.

5. TVLA / ISO 17825: “Industry standard” for Side-Channel testing.

© 2021 PQShield Ltd. PUBLIC

Lattices: Random Samplers
Decryption or Sign. verify testing won’t catch these bugs

- A random sampler picks a random number from given distribution.

Testing options: χ2 test statistics or similar, or a fully defined, deterministic sampler.

- Uniform distribution 0 ≤ x < 2n is easiest. Binomial (Hamming Weight) and other direct
mappings from fixed n bits are almost as easy. SABER, NTRU work with just these.

- Dilithium and Kyber also need uniform random 0 ≤ x < q, where q is a small prime.
This is done with rejection sampler that picks an uniform n-bit x’s (q < 2n) until x < q.
A variable number of x’s are required, but the method is still, usually leakage-free.

- Falcon signature requires random numbers from the Discrete Gaussian distribution.
Designers define a deterministic sampling method, which relies on IEEE 754 doubles.

© 2021 PQShield Ltd. PUBLIC

PQC KEM Low-Level Interface
KEMs are KEMs - Hope you can make them deterministic

- (CCA2) PQC KEMs can be used to for public-key encryption and decryption (e.g. by
pairing them with AEADs like AES-GCM), but this is not their natural testing interface.

- PQC KEMs can also be used for ephemeral key exchange, but do not have the
commutativity of Diffie-Hellman. KEMs natively use a keygen/encaps/decaps API.

© 2021 PQShield Ltd. PUBLIC

Keypair generation: Initialization. (PK, SK) ← KeyGen(Seed
KG

)

Encapsulation: Public key operation. (CT, SS) ← Encaps(PK, Seed
ENC

)

Decapsulation: Private key operation. SS ← Decaps(CT, SK)

PK = Public Key, SK = Secret Key, CT = Ciphertext, SS = Shared Secret, Seed = Random.

PQC KEM With Random Seeds
Hoping to retain KeyGen/Encaps KAT Determinism

- KYBER and SABER only take 32-96 bytes from
the RBG and initialize a (SHAKE) XOF with this.
(Originally specified for performance reasons.)

- With Seed
KG

and Seed
ENC

 inputs these KEMs are
fully deterministic. KATs (Known Answer Tests)
can be used without a dummy RNG.

- Not all algorithms have this, but is easy to add.

We hope NIST retains such simple KAT Testability!
(vs. the pain of e.g. validating RSA key gen now..)

© 2021 PQShield Ltd. PUBLIC

Finalist PQC KEM Seed
KG

 Seed
ENC

KYBER (all variants) 64 32

SABER (all variants) 96 32

Classic McEliece 32 (Large)

NTRU-hrss701 1432 1400

NTRU-hps2048509 2445 2413

NTRU-hrss1373 2776 2744

NTRU-hps2048677 3243 3211

NTRU-hps4096821 3927 3895

NTRU-hps40961229 5865 5833

PQC KEM Functional Testing
Current Practical Approach

- Run binary KATs: PQC design teams have specified fairly efficient and secure, de facto
serialization methods for public keys, secret keys, and ciphertexts. Each submission
comes with a set of KeyGen and Encaps KATs that use those. We use them to test our
hardware modules against public optimized and reference implementations.

- Add coverage: We have added KAT tests for invalid, corrupted, and mismatching
public keys and ciphertexts. PQC KEM Decapsulation should fail in an “implicit”
manner with a specific SS’ ≠ SS result (no failure oracle). This must be tested.

- Be smart and avoid ASN.1 (beyond algorithm OIDs and wrappings.) The designer’s bit
encodings can be improved, but not much! ASN.1 or other “abstract” low-level
encodings just make things worse. Also: Masking-friendly encodings != ASN.1.

© 2021 PQShield Ltd. PUBLIC

Outline: Notes for PQC Reqspecs

What can I ask for.. before FIPS 140 & NIAP covers PQC ?

1. Hash-Based Signatures (HBS) for Firmware Updates.

2. PQC KEMs: Basic low-level API and Functional Testing.

3. PQC Signatures: Basic low-level API and Functional Testing.

4. Formal Property Verification in PQC engineering.

5. TVLA / ISO 17825: “Industry standard” for Side-Channel testing.

© 2021 PQShield Ltd. PUBLIC

PQC Signature Low-Level Interface
Message (not hash) padding is usually a part of the algorithm

- PQC Signature algorithms generally do not support the old “hash-and-sign” mode.

- The algorithms perform message pre-padding; this eases requirements on collision
resistance and hash lengths. (A modern feature: Also XMSS & LMS/HSS, EdDSA.)

- The NIST “envelope” sign/open API is not super practical but can be used for KAT tests.

© 2021 PQShield Ltd. PUBLIC

PK = Public Key, SK = Secret Key, M = Message, S = Signature, SM = Signed Message.

(PK, SK) ← KeyGen(Seed
KG

) Concatenated “Envelope” KATs:

S ← Signature(M, SK, Seed
SIGN

) SM ← Sign(M, SK, Seed
SIGN

)

Ok / Fail ← Verify(S, M, PK) M / Fail ← Open(SM, PK)

PQC Signature Functional Testing
With Deterministic Key Generation and Signatures

- Dilithium uses an internal XOF in a similar fashion as Lattice KEMs. Current version 3.1
can be made deterministic with Seed

KG
 = 32 bytes and Seed

SIGN
 = 64 (or 0 random

bytes as one can also use the message itself - and the secret key - to derive Seed
SIGN

.)

- For modules we retain a compatible mode and hence can KAT test entire Dilithium
KeyGen() and Signature() functions using the seeds - in a similar fashion as PQC KEMs.

- Falcon and Rainbow have somewhat under-specified internal seed expanders (that
would have to be modified for NIST standardization), but could use the same principle.

- PQC Sign APIs are more like that of EdDSA than ECDSA. Also, specifying bit-level
serialization is best done by the algorithm design teams rather than PKI integrators.

© 2021 PQShield Ltd. PUBLIC

Outline: Notes for PQC Reqspecs

What can I ask for.. before FIPS 140 & NIAP covers PQC ?

1. Hash-Based Signatures (HBS) for Firmware Updates.

2. PQC KEMs: Basic low-level API and Functional Testing.

3. PQC Signatures: Basic low-level API and Functional Testing.

4. Formal Property Verification in PQC engineering.

5. TVLA / ISO 17825: “Industry standard” for Side-Channel testing.

© 2021 PQShield Ltd. PUBLIC

Formal Verification: Ask About It
Your PQC hardware vendor probably has formal models

- Formal verification is completely mainstream in the semiconductor industry, and tools
are mature. It is just more effective than randomized testbenches. Ask the vendor.

- We mainly use SystemVerilog formal assertions & Bounded Model Checking (BMC).
The tools can prove the assertions (or model equivalence) logically with a SAT solver.

- Can also cover Hardware/Software codesign (e.g. embedded C language with CBMC).

- Most of Dilithium, Kyber, Saber specification can be handled by modern formal tools.
Creating & checking models for components such as (ring element) Rounding,
Montgomery Reduction, Sampling, etc, is exactly what a verification engineer does.

To me it seems that the semiconductor industry is ahead of cryptographers in formal!

© 2021 PQShield Ltd. PUBLIC

Outline: Notes for PQC Reqspecs

What can I ask for.. before FIPS 140 & NIAP covers PQC ?

1. Hash-Based Signatures (HBS) for Firmware Updates.

2. PQC KEMs: Basic low-level API and Functional Testing.

3. PQC Signatures: Basic low-level API and Functional Testing.

4. Formal Property Verification in PQC engineering.

5. TVLA / ISO 17825: “Industry standard” for Side-Channel testing.

© 2021 PQShield Ltd. PUBLIC

Side Channel (Timing, DPA) Testing
In the absence of approved tests in SP 800-140F

Situation as I understand it:
FIPS 140-3 Levels 3 and 4 “Shall be tested to meet the approved
non-invasive attack mitigation test metrics.”

NIST SP 800-140F draft Revision 1 was circulated in August
2021.Finally includes test metrics for side-channel testing.

ISO/IEC 17825:2016 (new version 2021. Side-channel terminology,
Welch t-test / TVLA procedure), ISO/IEC 20085-1:2019 (Test tools),
and ISO/IEC 20085-2:2020 (test calibration methods and apparatus).

© 2021 PQShield Ltd. PUBLIC

Side Channels: TVLA and ISO/IEC 17825
Not perfect - but can be specified for PQC Side-Channel Tests

© 2021 PQShield Ltd. PUBLIC

Common “non-specific” t-test:
Get Power/Emission traces from Signatures
or Decryptions with random input and:

Set A: Constant Secret Key.
Set B: Varying (random) Secret Keys.

Compare pointwise distributions in Set A to
Set B with Welch t-test to detect leakage.

Side Channels in PQC
Main things to verify in PQC Signatures and KEMs

© 2021 PQShield Ltd. PUBLIC

- PQC Signatures are used for authentication similarly to ECDSA. Observation of
repeated signatures must not help forgery.

- “KEMTLS” is likely to be adopted for authentication so CCA KEM
Decapsulation is used with static keys, which must not leak.
https://www.ietf.org/id/draft-celi-wiggers-tls-authkem-00.html

- Also for CCA KEMs, Decapsulation failure oracles (malformed or mismatched
ciphertexts) must not be detectable via side channels.

(Payload-dependent latency seems unlikely as signatures always use hashes
and KEMs do not deal with plaintext at all. Key generation: one trace?)

During module development, check all components that “touch” SSPs.

https://www.ietf.org/id/draft-celi-wiggers-tls-authkem-00.html

Side Channels: PQC Timing Attacks
Secure implementations are available: Trust but Verify

- Most PQC Finalists have implementations that are resistant to timing attacks,
assuming that certain CPU instructions have data-independent latency.

- Verification: On RISC-V, the new Zkt extension defines that set. We use a special ISA
simulator to verify that SSP passes only through safe instructions in compiled code.

- Outside RISC-V one can use tools such as the memory sanitizer to do similar checks;
https://www.amongbytes.com/post/20210709-testing-constant-time/

- The term “constant-time” should not be taken literally. The algorithms have variable
timing. It is sufficient that the timing does not correlate with SSPs (e.g. secret keys).

- TVLA test: “non-specific t-test” on time (e.g. cycle counts), fixed keys vs random keys.

© 2021 PQShield Ltd. PUBLIC

https://www.amongbytes.com/post/20210709-testing-constant-time/

Side Channels: PQC and DPA, Emissions
Common mitigation: Masking & Threshold Implementations

- Masking: Computation on secrets is performed on randomized shares. But! Claim of a
“masked implementation” alone does not guarantee even basic TVLA/17825 security.

- Masked hardware modules will offer non-invasive attack mitigation -- at least for most
PQC Lattice Schemes. Software masking can also be done, but is not very portable.

© 2021 PQShield Ltd. PUBLIC

Masking requires special,
often PQC algorithm-specific
implementation techniques.

Note: XOFs and Seeds can be
masked too (SHA3 is much
simpler to mask than SHA2.)

Side Channels: FPGA Leakage Emulation
ISO/IEC 20085 - Can be specified for PQC Side-Channel Tests

© 2021 PQShield Ltd. PUBLIC

👈 We use FPGA to emulate leakage
during HW module development.
Helpful in finding “problem cycles.”

👇CW305 “artefact” as discussed in
Annex C of ISO/IEC 20085-2:2020(E).

Masked Key Wrapping for Lattice PQC
Example: WrapQ - Faster Secret Key Load/Store

- Obvious reasons: If the secret key storage or key loading is insecure, having a
side-channel secure signature or decapsulation implementation is pointless.

- “Key wrapping”: Symmetric encryption & integrity protection of secret key values.
Eases key management with large private keys and limited secure key storage.

- The standard bit-packing private key encodings of e.g. Kyber and Dilithium are very
poorly suited for masked wrapping/unwrapping.

- WrapQ: Special mode of operation & format to unwrap “freshly masked” lattice
private key shares in a secure fashion, yet without slow B2A transforms etc.

- Import and export to less easy to handle secret key formats if needed (PKCS #5, #7).

© 2021 PQShield Ltd. PUBLIC

Thank You!
Summary

© 2021 PQShield Ltd. PUBLIC

- Known Answer Testing of PQC (keygen/encaps/decaps & keygen/sign/verify) is
possible with many implementations, including hardware and even masked.
.. but need more coverage for KEM decapsulation failures and other special cases.

- At least individual low-level components are likely to be covered by formal tests.

- We hope NIST specifications will describe bit serialization and XOF “seed expanders”
that currently makes these functions internally deterministic and high-level testable.

- Side-channel secure keypair generation and secret key handling may be different from
the standard unmasked encodings. We hope for implementation freedom in this.

- TVLA & ISO 17825 are a de facto way of doing basic side-channel testing (Timing, DPA,
Emissions) of PQC modules. Masking is a robust, testable mitigation technique.

