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Recap: (July 2022) NIST PQC Algorithms
Post-Quantum Crypto transition affects all Applications

NIST Post-Quantum Crypto: Selected July 2022, Standards 2024. 

Kyber (+ Round 4 KEMs) 
Replaces EC(DH), RSA key establishment.

Dilithium, Falcon, SPHINCS+ 
Replaces EC(DSA), RSA signatures.

Especially for U.S. Government Entities:
- Active transition effort expected (presidential directives NSM-08, NSM-10).
- Regulations mandate FIPS 140-3 cryptography -> also for PQC modules.
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Recap: (September 2022) CNSA 2.0 / NIAP
Transition 2025-2030-2035:
“Note that this will effectively 
deprecate [in NSS] the use of RSA, 
Diffie-Hellman (DH), and elliptic 
curve cryptography (ECDH and 
ECDSA) when mandated.”
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Side-Channel Attacks

Fault Attacks (FA)

Some Security Requirements in Applications
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Everybody needs..

Timing Countermeasures
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> A Quarter of a Century of Timing Attacks
Some Greatest Hits (in asymmetric crypto TA) Along the Years:

● P.C. Kocher: "Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and 
other systems." (CRYPTO 1996. Target: RSAREF 2.0 running on MS-DOS.)

● D. Brumley and D. Boneh: "Remote timing attacks are practical."
(USENIX Security 2003. OpenSSL RSA remote key recovery, CVE-2003-0147.)

● B. Brumley and N. Toveri: "Remote Timing Attacks Are Still Practical." 
(ESORICS 2011. OpenSSL ECDSA remote key recovery, CVE-2011-1945.)

● Q. Guo, T. Johansson. A. Nilsson, "A key-recovery timing attack on post-quantum 
primitives using the Fujisaki-Okamoto transformation and its application on 
FrodoKEM." (Crypto 2020, PC Oracle, demoed against a claimed const-time impl.)

 Every generation gets to learn the special implementation tricks!
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Basic Sources of Timing Leaks
(That are avoidable with careful programming)

1. Secret-controlled branches and loops:

if <secret> then { delay1(); } else { delay2(); }

2. Memory accesses (cache timing attacks). Can be a load or store.

ct = SBox[pt ^ key]; // observe latency with different inputs.

3. Arithmetic operations whose processing time just depends on inputs

x = y % q; // division and remainder ops are rarely constant-time.
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PQC: Rejection Sampling
A lot of this in PQC: We don’t mean literally “constant time”..

- You have a fair 6-sided dice and want to have random numbers 1..5:

- Just reject sixes. The remaining 1..5 are uniform in that range.

- Number of rolls (time) and even the pattern of rejects can be public.

- But secure! does not leak 1,2,3,4,5.

- The same Rejection Sampling idea
extends to arbitrary distributions.
(Dilithium does R.S. in four ways..)
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Dilithium Sign() is one big rejection sampler!
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PQC: Sorting/Permutation Networks
General CT technique – but explicit Classic McEliece  

- Example: Insert permutation (or its inverse) in the most significant digits, 
data in least significant. Extract permuted digits from the sorted array.

- Batcher’s Odd-Even mergesort: 
2m(m2-m+4)/4-1 compare-swaps.

 
- Beneš network: 

2m(2m-1)/2 controlled swaps.

(Note: Determining control
bits in constant time is slow.)
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When Hiring a (Post-Quantum) Crypto Dev..
Constant-time coding / algorithm knowledge is fundamental

- Have a “library” of solid CT replacements for memcmp() and similar functions.

- Identify conditionals, transform to straight-line code using Boolean operations 🤔
 x = s ? a : b;  vs.   x = b ^ ((-(s & 1)) & (a ^ b));

- Table-lookups: Bit-slicing (entire thing as a Boolean circuit), “full scan / collect”.

- No division instructions in modular arithmetic (use Montgomery, Barrett etc.) 

- Know how to test with symbolic execution (e.g. valgrind) or on instruction level..

.. etc .. these are core crypto programming skills!
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RISC-V “Data Independent Execution Time”
Portable constant-timeliness is already codified into the ISA

- One can use static analysis or dynamic variable tainting (in emulator) to verify that 
compiled code is using only the right instructions to handle secret data.

- But: ``Constant-timeness’’ of Intel and ARM instructions: mostly from experiments.

- RISC-V CETG codified timing as the Zkt extension for scalar, and the (brand new) 
Zvkt DIEL instruction list for vector. https://github.com/riscv/riscv-crypto/releases

- Official RISC-V PQC ISA is starting: https://lists.riscv.org/g/tech-pqc-cryptography
- Work is ongoing on microarchitectural side-channel assistance on RISC-V ISA level.
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Couple of things about..

DPA & DEMA 
Countermeasure “Transition”
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Inherited SCA Application Requirements
Platform Security / RoT, Smart Cards, Authentication Tokens, etc
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Power and EM Leakage: Think of “Toggling”
Physical models are complex, but basic mental model is simple.

- Logic changes (0 → 1 or 1 → 0) consume dynamic power. 
(There is also static power, but resting bits generally don’t leak.)

- State changes also emanate on the electromagnetic spectrum.

- User-visible CPU registers and memory are
just one part of the vast logic machinery
that handles your secret bits, and whose
registers & data paths toggle accordingly.

15
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Some Classical countermeasures – RSA and ECC
These were extremely simple algorithms + had algebraic structure

RSA: Blinding and masking (D. Chaum 1982, P. Kocher 1996+)
- Message blinding: Pick random r, compute blinded c’=cre (mod n), 

decrypt/sign c’ instead of c: m’=c’d (mod n), normalize by m = m’r-1.
- Exponent masking: use d’ = (p-1)(q-1)r + d to randomize exponentiation.

ECC: J.-S. Coron, “Resistance against Differential Power Analysis for Elliptic 
Curve Cryptosystems.” Proc. CHES’99, pp. 292–302, 1999
- For 20+ years: Randomization of the Private Exponent [Scalar], Blinding 

the [Base] Point P, Randomized Projective Coordinates, + misc.

Basically 1 step – ModExp (RSA) or Scalar Mult (ECC) – to protect
16
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- Masking splits secrets into “shares.” Successful measurement of an individual share 
does not leak secret info. Design “Masking Gadgets” to perform arithmetic steps.

Type: Relationship:  Algebraic object:
A/Q: X = X0 + X1  (mod q) Prime q is 3329 (Kyber) or 8380417 (Dilithium).
A/N: X = X0 + X1  (mod 2N) May also be needed by Kyber and Dilithium.
B: X = X0 ⊕ X1   Various nonlinear functions, shifts, etc.

- Most cryptographers agree: Masking and other attack mitigation techniques for PQC 
algorithms are technically more complex than for older cryptography.

- Why? The algorithms are not homogenous like RSA or ECC but contain a number of 
dissimilar steps. One may have to design dozen different gadgets for one algorithm.

New Countermeasures: Kyber and Dilithium 
PQC needs masking ( + blinding, shuffling, random delays .. )

17
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First question: What needs to be protected?
Mostly just the CSPs – “Critical Security Parameters”

Classification in Crypto Module world: 
- Public Security Parameter (PSP) needs integrity only: Can’t be modified.
- Critical Security Parameter (CSP) needs confidentiality (secrecy) and integrity. 
- Together these are Sensitive Security Parameters (SSP≅ All variables in crypto! )

Section 7.8 of ISO/IEC 19790:2012(E) and 19790:2022(E):  ``Non-invasive attacks 
attempt to compromise a cryptographic module by acquiring knowledge of the 
module’s CSPs without physically modifying or invading the module.’’

For us, a CSP is any information that helps (the attacker) directly or indirectly to:
1. Determine a shared secret in a key establishment scheme or
2. Forge a signature in a signature scheme.

18



© 2023 PQShield Ltd. PUBLIC

Background: Masking Generic Circuits
When we don’t have a handy algebraic structure

Each bit x is split into d uniform random shares: [[x]] = x
0
 ⊕ x

1
 ⊕ .. ⊕ x

d-1
. 

“We prove that the amount of side channel information required grows 
exponentially in [ d ], the number of shares.”

[ S. Chari, C. S. Jutla, J. R. Rao, P. Rohatgi. CRYPTO ‘99 ]

“We show that any circuit with n gates can be transformed into a circuit of 
size O(nt2) that is perfectly secure against all probing attacks leaking up to 
t bits at a time.”

(“t-probing model”) [ Y. Ishai, A. Sahai, D. Wagner, CRYPTO ‘03 ]
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Example: Some bit-level first-order gadgets..
Random bits may be required every time

20

SecXor: [[X]] = [[A]] ⊕ [[B]]  X0 = A0 ⊕ B0
(no share mixing!) X1 = A1 ⊕ B1

SecAnd: [[X]] = [[A]] ∧ [[B]] X0 = (A0 ∧ B0) ⊕ R ⊕ (A0 ∧ B1) 
(R is a random bit.) X1 = (A1 ∧ B0) ⊕ R ⊕ (A1 ∧ B1)

Evaluation order matters (here from left to right). SecXor is  O(d)  but SecAnd 
complexity increases in quadratic  O(d2)  fashion with the number of shares.

Recently, quasi-linear  O(d log d)  masking complexity has been achieved for 
some functions, but not for full Dilithium or Kyber.  More about this later.. 
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NIST PQC: Good News and Bad News
Kyber and Dilithium benefit from this a lot..

21

Core (Structured/Unstructured - Ring/Module) LWE: “irreversibility” of:

t := A · [[s]] + [[e]]

..where A is a public generator, s and e are secret. The t is public (collapsed).

Good news: There is no multiplication between two secrets (say, [[s]] · [[r]]). 
Since A is public, the core operation is linear: shares don’t interact. It’s  O(d) .

Bad News: The s and e distributions are non-uniform. Kyber and Dilithium 
require a lot of mixing (mod q) arithmetic masking with Boolean masking.
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A bit similar to SHA2 vs SHA3

Symmetric Support Primitives

22
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A Really Important Gadget: Masked Keccak
Both Kyber and Dilithium need a SCA-Secure SHA-3/SHAKE

- The SHA3 hash and SHAKE Extendable-Output Function (XOF) are built on 
the 1600-bit, 24-round Keccak permutation. [ Defined in FIPS 202, 2015 ]

- Luckily SHA-3 is a “Post-SCA” algorithm: The designers of Keccak had 
worked in the semiconductor industry, knew about side-channel security.

[ G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. “Building power 
analysis resistant implementations of Keccak.” The second SHA-3 
Candidate Conference, NIST, 2010 ]

- The NIST LWC Winner Ascon inherits many of the same SCA features.

23
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XORs are Good, Nonlinear ops are Expensive
Keccak has a lot of XORs mixing, extremely simple non-linear Layer

- Keccak description has 5 “mappings” ( θ, ρ, π, χ, ι ), out of which 4 are 
linear – θ, ρ, π, ι can be implemented with XORs (not mixing shares!)

- The “S-Box” Chi (χ) is basically just 1 layer of ANDs.

- Due to structure, one can also save/recycle  masking
randomness with a “threshold implementation” (TI).

- Relatively simple, but a Masked Keccak can be rather
large; perhaps 100k GE. However would be really fast.

24

Chi (χ) “s-box” – FIPS 202 art!
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So why not SHA-2?
For starters, it’s not a XOF. Also it’s a “pre-SCA” design.

- SHA-2 implementations need side-channel security if used as a HMAC or 
for key derivation (HKDF). It is very poorly suited for this.

- Why? Main reason: SHA2-256/512 mixes 32/64-bit additions with 
Boolean XORs and nonlinear operations in literally every round.

- This requires Boolean-domain adders or A2B/B2A, which is complex/slow.

[ L. Goubin. “A Sound Method for Switching between Boolean and Arithmetic Masking.”  
CHES 2001 ] (See also M. Karroumi et al. “Addition with blinded operands.” COSADE 2014.)
[ J.-S. Coron, J. Großschädl, M. Tibouchi, P. K. Vadnala. “Conversion from Arithmetic to 
Boolean Masking with Logarithmic Complexity.” FSE 2015 ]

25
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So why not SHA-2?
Mixing Additions with Boolean operations is literally all it does
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A2B and B2A transforms are complicated
Each mixing can be like..

27
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Okay, back to PQC Itself

Overall Method & 
An Example from Kyber

28
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Countermeasure Design Methodology – PQC
Requires good cryptanalytic understanding of the algorithms

29

PQC algorithms don’t have “nice group structure” that would allow such 
1-step techniques to be used. About dozen different gadgets are needed.

1. Identify all critical variables and computations / points of attack.
2. Design consistent countermeasures for each (at least masking).
3. Validate countermeasures. Apply adversarial analysis, testing.
4. Based on analysis and new research: Improve, loop to Step 3.

State of the Art: We and a few others are in the continuous iteration phase 
3-4 with Kyber and Dilithium. Note: Thus far no one (to our knowledge) has 
completed Step 2 for Falcon – only timing attack resistance..
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Example: Encoding Gadget in Kyber
One of dozens of required gadgets in Kyber and Dilithium

30

All gadgets need to be secure but this is the one whose "mkm4" implementation was 
attacked in https://ia.cr/2022/1713 (RWC '23 + lots of news) and https://ia.cr/2023/294

( I was set up to use this example by Lejla, Stjepan, and Bas in the Cloudflare blog..! 😊 )

https://ia.cr/2022/1713
https://ia.cr/2023/294
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Anyway, Where is the Bad Gadget? 
It’s in an open-source implementation called “mkm4”

31
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( CT, SS ) = Kyber.CCAKEM.Enc( PK ):

1. seed ← random 32 bytes // Seed: Unique every time.

2. M ← SHA3-256( seed )   // Hash it, “just to be sure?” 🤷
3. ( K, R ) ← SHA3-512( M ǁ SHA3-256( PK ) ) // Shared secret K and seed R.

4. CT ← Kyber.CPAPKE.Enc( PK, M, R ) // Encrypt to create ciphertext.

5. SS ← SHAKE-256( K ǁ SHA3-256( CT ) ) // Shared Secret (256 bits).

- CSP variables are marked in RED. Ciphertext CT is public, session key SS secret, etc..

The wrapper is known as the “Fujisaki-Okamoto Transform.” It is essential to protect 
against Chosen Ciphertext Attacks (CCA) if the secret key is fixed (not ephemeral). 

Kyber High-Level Encapsulation (“Alice”)
Encapsulation wraps Encryption inside a *a lot of* hashing

32
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SS  = Kyber.CCAKEM.Dec( CT, SK ):

1-4. ( S, PK, h, Z ) ← SK // Decode secret key.

4. M’ ← Kyber.CPAPKE.Dec( S, CT ) // Encrypt to create ciphertext.

5. ( K’,R’ )← SHA3-512( M’ ǁ SHA3-256( PK ) ) // Hash of PK is cached in “h.”

6. CT’ ← Kyber.CPAPKE.Enc( PK, M’, R’ ) // Simulated encryption.
7. If CT ≠ CT’ then: // If re-encryption different,
10. | K’ ← Z // .. replace key with a “fake.”

12. SS’ ← SHAKE-256( K’ ǁ SHA3-256( CT ) ) // Shared Secret.

If CT is valid, one can get SS’ without steps 6-10 – and perhaps make the decapsulation 
twice as fast – but this won’t be secure against (adaptive) CCA attacks. Known Attacks!

Kyber High-Level Decapsulation (“Bob”)
Decapsulation wraps & tests Decryption. Pretends to never fail!

33
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- Gadget 1: Kyber.CPAPKE.Enc with masked M, R. (Line 4 of Kyber.CCAKEM.Enc.)

- Gadget 2: Kyber.CPAPKE.Dec with masked S, M’. (Line 4 of Kyber.CCAKEM.Dec.)

- Gadget 3: Kyber.CPAPKE.Enc additionally with masked ciphertext CT’.
(Line 6 of Kyber.CCAKEM.Dec.) That message encoding func is here!

- Gadget 4: Secure Keccak with Masked Input and Output.
(A lot of instances except: SHA3-256(PK) and SHA3-256(CT).)

- Gadget 5: Secure compare and select. (Lines 7-12 of Kyber.CCAKEM.Dec)

Highest-Level Gadgets in Kyber Encaps/Decaps
CCA Decaps needs a “more secure” CPA Enc than CCA Encaps

34
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CT = Kyber.CPAPKE.Enc( PK, M, R ):

1. ( t̂, ρ ) ← PK // Deserialize  t̂ and ρ from the public key.

4. Â ← gen(ρ)   // (Actually compute Â on the fly from seed ρ.)

9. r ← CBD( η
1
, R, 0,1,..k-1 ) // Weights of 2×η

1
 segments of SHAKE-256 output.

13. e
1

← CBD( η
2
, R, k,..,2k-1 ) // Error 1 is the same, but uses distribution η

2
.

17. e
2

← CBD( η
2
, R, 2k ) // Error 2 is a single (n=256) ring element.

18. r̂ ← NTT( r ) // Transform ephemeral secret.

19. u ← NTT-1( ÂT ◦ r̂ ) + e
1

// First part of ciphertext: u = AT · r + e
1
.

20. m ← Decompress
q
(M, 1) // “One time pad” bits as { 0, ceil(q/2) }.

v ← NTT-1( t̂T ◦ r̂ ) + e
2
+ m // Second, shorter part of ciphertext: tT · r + e

2
 + m.

21. return CT = ( Compress
q
(u, d

u
), Compress

q
(v, d

v
) )

[“That gadget”] Kyber Encryption (CPA)
A subroutine for both Encapsulation and Decapsulation
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The serialization methods mostly involve bit field packing (ignoring those for now)

Kyber also does lossy scaling to 1 (“message”) and d
u
, d

v bits
bits: d  ∈ { 1, 4, 5, 10, 11 }.

Compress
q
: Scales a number from mod-q range [0, q-1] to d-bit range [0, 2d-1].

Compress
q
(x, d) = ⌈ (2d / q ) · x ) ⌋  mod  2d.

Decompress
q
: Scales a number from d-bit range [0, 2d-1] to mod-q range [0, q-1].

Decompress
q
(x, d) = ⌈ ( q / 2d ) · x ) ⌋.

Note: ⌈x⌋ = floor( x + ½ ) is rounding to closest integer, with ties rounded up.

[HERE!] Kyber’s Encoding and “Compression”
More than slightly cumbersome bit-dropping optimization 
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Technically it was masked..
But vulnerable to basically “1-trace Horizontal SPA”

37
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Well, I didn’t do it like that
One can encode the message AFTER compression

38

However we can do things in different order:
There are two parts in ciphertext, canonically CT = (u,v); this is the “v” side. 

CT = ( ..stuff.., Compress
q
( ..stuff.. + Decompress

q
(M, 1), d

v
)  

The coefficients of v are compressed from 12 bits (mod q) to d
v
 =  {4,5} bits.

We create two “v” masked, compressed ciphertexts and combine them: 
1. Boolean [[ctv0]]: Encryption of 256 zero bits (128 or 160 bytes/share).
2. Boolean [[ctv1]]: Encryption of 256 one bits (same but all bits refreshed).
3. Use [[M]] to select {4,5} - bit fields from [[ctv0]] and [[ctv1]] into [[ctv]].
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A Peek inside a Commercial Security Module
(Often bears no resemblance to the reference implementation.)

39

- A coprocessor manipulates the mod q vectors with 4 coefficients per 64-bit word.

- Our hardware has a “A2A” transform that performs an intermediate conversion from 
(mod q) to (mod 2N) arithmetic domain and helps with the A2B step and compression.

- There is a fast masking random number generator that is used to refresh entire 
representations of [[ctv0]], [[ctv1]], and the selector vector [[M]] between invocations.

- Message encoding was viewed as security-critical and is not very time-critical, hence 
we did it this complicated way from the beginning.

- Adversarial evaluation (hi Timo Z!) didn’t find exploitable leakage in this particular 
gadget, but it is just one of dozens of possible attack points for template attacks..
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The Really Complex Beast: CRYSTALS-Dilithium
NIST’s Preferred PQC Signature Scheme

“While there are multiple signature algorithms selected, NIST recommends 
CRYSTALS-Dilithium as the primary algorithm to be implemented.” 

– NIST IR 8413, July 2022

For masked Dilithium I’m only aware of our proprietary hardware module and: 

[ V. Migliore, B. Gérard, M. Tibouchi, P.-A. Fouque. “Masking Dilithium: Efficient 
Implementation and Side-Channel Evaluation.” ACNS 2019, https://ia.cr/2019/394 ]

[ M. Azouaoui, + a lot of authors. “Leveling Dilithium against Leakage: Revisited 
Sensitivity Analysis and Improved Implementations.” https://ia.cr/2022/1406 ]

40
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02. ρ, ρ’, K ← random or H(Seed) // Public and secret seed values.
03. Â ← ExpandA(ρ)   // Public Â has size k × l × R

q
 , derived from ρ.

04. s
1

← ExpandS(ρ’, 0,2,..,l-1) // Secret s
1
 has size l × R

q
, distribution [-η, +η].

s
2

← ExpandS(ρ’, l, ..,l+k-1) // Secret s
2
 has size k × R

q
, distribution [-η, +η].

05. t ← A · s
1
 + s

2
// All of t is secure. A · s

1 
= NTT-1(Â◦NTT( s

1
)).

06. (t
1
, t

0
) ← Power2Round( t, d ) // Split t; t

1 
high 13 bits,

 
t

0 
low 10 bits.

07. tr ← H( ρ, t
1 

) // tr = SHAKE256(PK).
08. return PK = ( ρ, t

1
 ),  SK = ( ρ, K, tr, s

1
, s

2
, t

0 
)

- The actual secret key is just ( s
1
, s

2
 ). The K variable is only used in non-randomized 

signing (where the same message and SK always give the same sig.)
- Note that ExpandS(ρ’) deterministic sampling is only useful in testing. If one can get 

uniform [-η, +η] numbers (basically ℤ
5
 and ℤ

9
) directly in shares, this is better.

[Identify CSPs] Dilithium Keypair Generation
Simplest and Fastest Operation in Dilithium

41
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09. Â ← ExpandA(ρ)   // A has size k × l × R
q
 , derived from ρ.

10. μ ← H( tr || M )   // 512-bit message hash with H(PK) prefix.
11. κ ← 0,  (z, h)  ← ⊥ // Iteration counter κ, Iteration result.
12. ρ’ ← random [ or H( K, μ ) ] // [ Use hash in deterministic signing. ]
13. while (z, h) = ⊥ do: // — REJECTION LOOP —
14. | y ← ExpandMask( ρ’, κ.. ) // y is l × R

q
 sampled from [-γ

1
, +γ

1
].

15. | w ← A*y // Compute as w = NTT-1(Â◦NTT( y )).
16. | w

1
← HighBits

q
( w, 2γ

2
) // w

1
 range is (q-1)/2γ

2
 so [0,15] or [0,43].

17. | ɕ ← H( μ, w
1 

) // ɕ is derived from message and public key.
18. | c ← SampleInBall(ɕ) // c is in R

q
, has τ non-zero (±1) coefficients.

19. | z ← y + c*s
1

// It’s better to store NTT(s
1
) – as shares.

 That’s the arithmetic for ɕ and z. We must reject them and “goto 14” if some checks fail..  

[Identify CSPs] Signature Generation (1 of 2)
Create a randomized “challenge” based on the message 
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[Identify CSPs] Signature Generation (2 of 2)

20. | r
0

← LowBits( w - c*s
2
, 2γ

2
) // Range is basically ±2γ

2
21. | if  MaxAbs(z) ≥ γ

1
-β  or  MaxAbs(r

0
) ≥ γ

2
-β then:  (z, h)  ← ⊥ // reject

22. | else:
23. | h  ← MakeHint( - c * t

0
 , w - c*s

2
 - c * t

0
, 2γ

2
) // h ∈ {0,1}kN

24. | if  MaxAbs(c * t
0
) > γ

2 
or CountOnes(h) > ⍵ then:  (z, h)  ← ⊥ // reject

25. | κ ← κ + l // For creating fresh y in next iteration
end while

26. return Sig = ( ɕ, z, h ) // no longer secret

- Protecting just the  ( s
1
, s

2
 ) secret itself via masking is easy; NTT in shares. 

- Leaking the one-time secret y also breaks things; use masked arithmetic.
- MaxAbs and SampleInBall are very tricky to implement in masked format.
- The protected variables become non-secret (signature) after passing the check. 

Based on “Fiat-Shamir with Aborts” - Rejection Iteration
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{ T, F } = Verify( Sig, M, PK ):

( ɕ, z, h ) ← Sig // Deserialize signature.
( ρ, t

1
 ) ← PK // Deserialize public key.

27. Â ← ExpandA(ρ) // “Lattice” in NTT transformed domain.
28. μ ← H( H(PK), M )   // Prefix the message hash with H(PK).
29. c ← SampleInBall(ɕ) // Hash to τ non-zero (±1) coefficients.
30. w’

1
← UseHint

q
( h, A*z  - c*t

1
 · 2d, 2γ

2 
) // Hint helps make w’

1
 exactly matching.

31. if   MaxAbs( z ) <  γ
1
-β  and  ɕ = H( μ || w’

1
)  and  CountOnes(h) ≤ ⍵  then:

| return T  👍 “Good signature”
else:
| return F  👎 “Fail!”

Dilithium Signature Verification
For completeness – Luckily doesn’t involve secrets
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Dilithium Summary
Designing “Post-SCA” PQC Lattice Signatures!

- A bit hard: Dilithium is really quite complex to secure due to bit-level gadgets, 
and side-channel attacks/evaluation are also less mature than for Kyber.

- The randomized version is definitely more secure than the deterministic one. 
(As noted also in https://ia.cr/2022/1406  – along with better CSP analysis.)

- Suggestion (not entirely original): You can defend against bad RNGs without 
going fully deterministic; use ρ’ ← H( $, K, μ ) where $ is random, K is from the 
secret key, and μ binds it with public key and message: μ = H( H(pk), M ).

- Key management (and KeyGen) also needs security: https://ia.cr/2022/1499
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Turning Things Around: Masked Raccoon 🦝
Designing “Post-SCA” PQC Lattice Signatures!

- So, protecting Dilithium is hard (but doable) and masking Falcon hard hard! 
Countermeasures are becoming more expensive as attacks develop.

- A current research area: Designing PQC algorithms for side-channel security. 
( In similar way as SHA-3 is “Post-SCA” when SHA-2 clearly is not. )

- A new lattice-based signature scheme that does not require “hard gadgets” 
(masked SHAKE, A2B/B2A etc). Masking is O(d log d) - We can run it at d=32!

[ R. del Pino, T. Prest, M. Rossi, M.-J. O. Saarinen. “High-Order Masking of 
Lattice Signatures in Quasilinear Time.” Proc. IEEE Security & Privacy 2023. ]
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Reading Traces

On Testing and Certification
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How do we test SCA-secure things in design?
Physical testing is just the final step

1. Design secure gadgets. Ideally the gadgets should be provably secure in 
appropriate model (t-probing model, noisy leakage model), perhaps have 
SNI (Strong Non-Interference) composability, etc.

2. Leakage simulation in microcontroller and Pre-Silicon for hardware.
- The models range from very simple & fast – based on bit toggling – to 
extremely advanced “3D” physical models.
- Attack modeling with leakage simulation can be very advanced.

3. Physical verification / Sign-Off. Oscilloscopes running leakage assessment 
tests like TVLA. Mainly to find implementation-specific effects.
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Third Party Evaluation
Ever-Continuing Process – Developing Industry Best Practices

We’re working with Riscure (a well-known 3rd party security testing laboratory) to 
evaluate our testing methods and the reports issued to semiconductor customers.  

"Based on our assessment of the internal evaluation report, PQShield follows industry best practices to 
showcase base level first order side channel resistance of their post-quantum crypto implementations"

"In conclusion, the test methods PQShield uses for gaining a base level assurance on the side channel 
attack resistance of the implementations in a continuous integration environment is logical and follows 
industry best practices"

(But methodology needs to be continuously developed.)
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Certification: FIPS 140-3 vs. Common Criteria
Standardized Checks vs. Penetration Testing

- FIPS 140-3 (“Security Requirements for Cryptographic Modules”)
Mostly a checklist / functional testing approach. Levels 3 and 4 
mandate “non-invasive attack mitigation” testing “if claimed.”

- Common Criteria (CC) can mean many things! High-assurance 
Protection Profiles (PP) contain AVA_VAN.4 or .5 (Advanced) 
methodical vulnerability analysis with “attack potential” scores.

- NSS (U.S. DoD / IC) NIAP also defines Common Criteria 
Protection Profiles, but borrows many things from FIPS testing.
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- Score-based system. High attack potential (well-
resourced) lab spends 1-3 months, assigns an score 
(≅$ cost) on attack: required time, expertise, 
knowledge/access of TOE, equipment, open samples.

- Covers things like (machine learning) template 
attacks, but is agnostic to PQC vs Classical !

- Practical: Aims at key recovery or similar break.

Used with Smart Cards and similar devices:
https://www.sogis.eu/documents/cc/domains/sc/JIL-Ap
plication-of-Attack-Potential-to-Smartcards-v3.2.pdf

Common Criteria: AVA_VAN.5
Evaluation of “High Attack Potential”
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SP 800-140Fr1 & New ISO 19790 → ISO 17825
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New ISO 17825 (Nothing specifically on PQC)
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ISO 17825 Leakage Analysis Scenario
DPA and DEMA: Power and Electromagnetic Emission Traces

- Standard attack setting: Tester can set inputs to the module at the IO boundary 
(API). Can choose inputs and synchronize to the start of the operation.

- Oscilloscope measures power (or electromagnetic emissions) of operations at 
high precision, ≥1 samples per cycle, thousands of times. Results are “traces.” 

- Traces are analyzed to detect leakage. In leakage analysis the analyst can know 
or choose keys: Is looking for correlations between keys and and the traces.

- Statistical analysis of significance. “TVLA” PASS/FAIL metric (no key recovery).
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SCA Test Automation for Post-Quantum Crypto

- ISO 17825 has a “general statistical test procedure.” 

- The current version of these tests create data subsets A and 
B of measurements (e.g., trace waveforms) with the IUT. 

- But the trace sets A and B need input test vectors!

- Example: Set A may use a fixed bit value in a CSP, while 
measurements in set B use random CSP values. 

- If the A/B measurement sets can be distinguished from each 
other – with the Welch t-test with high enough statistical 
confidence – this is taken as evidence of CSP leakage.

Detects “leakage” – no key recovery (easily False Positives)
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Automatic: PQC SCA Continuous Integration
Spring 2022: CI starts running (photo of an early set-up in Oxford)
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Test Automation: Construction of A and B sets
Fixed vs Random (“FIX”) and A/B Classification (“ABC”)

1. Fixed vs Random (non-specific t-test) can be used in “live” testing:
- Trace set A: Fixed CSP for every trace. 
- Trace set B: New random CSP secret for each trace.

2. A/B Categorization works with capture-then-analyze flow:
- Records traces with detailed test vector metadata; CSPs are known in analysis.
- Traces are categorized after capture to A and B sets based on CSP selection criteria, 

Examples: a specific internal CSP variable or secret key bit, “plaintext checking” bit.
- The same trace data can be categorized to A and B in a number of different ways.

In both cases: Set A and Set B statistically differentiable with t-test = FAIL.
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TVLA: How to read a “T-Trace” like this?
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[..reference..]  ISO 17825 “TVLA”
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NIST PQC Side-Channel Security: Summary
Doable, but not default in hardware implementations

1. Core MLWE ( t := A · [[s]] + [[e]] ) is “simple” (like RSA or ECC)  but Kyber and 
Dilithium countermeasures are made difficult by bit-manipulation operations on 
secrets. Kyber and Dilithium are getting relatively mature, Falcon is TA only.

2. Common Criteria methodology AVA_VAN can be already applied to PQC.
- Covers advanced attacks against it (e.g. ML assisted template attacks).
- Assigns a cost to attack. Requires a “high-attack potential” lab + personnel.

3. FIPS 140-3 / ISO 18725 non-invasive mitigation testing can be automated:
- Leakage assessment PASS/FAIL verifies the existence of mitigations in every 

component that handles CSPs: Keygen, Key Export, Import, Encaps, Decaps, Sign.
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Thanks for listening!

Q & A
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- Coefficients / elements work in ℤ
q
 with q = 8380417 = 223 - 213 + 1 fitting a 23 bits.

- Ring again is of type R
q
 = ℤ

q
 [x]/(xn + 1) with n=256. NTT arithmetic is used.

- A has two dimensions: k and l, so the total dimension is  k × l × n.
- Public key compression (bit dropping): d = 13 bits.
- Challenge distribution has τ non-zero ±1 coefficients and (n-τ) zero coefficients.
- The secret key distribution is uniform but in very short range [-η, +η].
- Uniform y sampling range [-γ

1
, +γ

1
] and low-order rounding range is [-γ

2
, +γ

2
].

- Furthermore we have rejection bounds β (for signature) and ⍵ (for carry hint h).

Parameter Set (k, l) τ η γ
1

(q-1)/γ
2

β ⍵ Reps Classic Quant
Dilithium 2: (4, 4) 39 2 217 88 78 88 4.3 2123 2112

Dilithium 3: (6, 5) 49 4 219 32 196 55 5.1 2182 2165

Dilithium 5: (8, 7) 60 2 219 32 120 75 4.0 2252 2229

[..reference..] Dilithium Algorithm Parameters
A Signature Algorithm based on MLWE and SIS
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