
High-Order Masking of Lattice
Signatures in Quasilinear Time

Rafaël del Pino 1 Thomas Prest 1
Mélissa Rossi 2 Markku‐Juhani O. Saarinen 1

1 PQShield 2ANSSI

44th IEEE Symposium on Security and Privacy
22 May 2023, San Francisco, CA

Side-Channel Attacks and Post-Quantum

Side‐Channel Attacks (SCA) use external measurements
such as latency (TA), power consumption (SPA/DPA), or
electromagnetic emissions ([S/D]EMA) to extract secrets.
SCA resistance is important for PC, IoT, and mobile device
“platform security” (secure boot, firmware updates, attestation),
authentication tokens, smart cards, HSMs / secure elements..
Common compliance & market requirement for hardware
(Common Criteria / AVA_VAN, FIPS 140‐3 / ISO 17825).

Post‐Quantum Cryptography (PQC) implementations –
e.g. lattice‐based signature schemes Dilithium and Falcon
inherit all of the security and compliance requirements of
Elliptic Curve or RSA based solutions in applications.

Masked Raccoon: Side-Channel Secure Signatures

1 Masked Raccoon is a member of the
new Raccoon family of lattice‐based
PQC signature schemes.

2 Side‐Channel Security is proved in the
Strong Non‐Inteference (SNI) framework.

3 Cryptanalytic Security is proved in
relation to well‐studied MLWE and
SelfTargetMSIS problems.

4 Performance is evaluated with both PC
and a constrained FPGA hardware target.

Masking: Non-Invasive SCA Security

Masking: Secret data JsK is processed in d = order + 1 randomized shares si.
Boolean Masking: JsK = s1 ⊕ s2 ⊕ · · · ⊕ sd

Arithmetic Masking: JsK = s1 + s2 + · · ·+ sd (mod q).
Like secret sharing: Knowledge of d− 1 shares si does not reveal anything about JsK.
If you only have partial or “noisy” measurements (traces), it has been shown that the
number of such observations required to learn JsK grows exponentially with d.
Masking proofs give formal, algorithm‐level assurance against side‐channel leakage.
The proofs can be made in several models; the Ishai‐Sahai‐Wagner (ISW)
t‐probing security requires that any t internal intermediate values don’t reveal secrets.
The noisy leakage model is an alternative; links have been proven between t‐probing
security, noisy leakage model, and information‐theoretic attack complexity bounds.

Complexity of Masking: Linear, Quadratic, Quasilinear

Linear operations only need linear O(d) effort to mask:
Addition / subtraction / XOR of masked variables (JsK + JrK), multiplication (or Boolean
AND, OR) with a scalar constant or a public variable (c · JsK), or share‐independent linear
operations such as NTT (Number Theoretic Transform.)

Non‐linear operations generally require quadratic O(d2) effort:
Multiplication (Boolean AND, OR) between secret variables (JsK · JrK), conversion between
Arithmetic and Boolean masking (A2B and B2A), or symmetric cryptography like SHA3.

But some non‐linear operations can be done with quasilinear O(d log d) effort:
Practical quasilinear techniques are known only for a limited number of computational tasks.

Why is Dilithium Hard To Mask?

Dilithium requires a masked SHAKE;
mixes bit manipulations with (mod q)
arithmetic, requiring A2B and B2A; has
masked comparisons / rejection sampler.

(For these non‐linear operations only
quadratic O(d2) gadgets are known.)

Raccoon avoids quadratic operations.
The cost of additional shares is nearly
constant. (Cycles/share even decreases
initially due to a small constant overhead.)

2 4 8 16 32
0

0.5

1

1.5

2

Number of shares d

Cy
cl
es
/
sh
ar
e
(s
ca
le
d
to
d
=
2.
)

Raccoon Sign
Dilithium Sign

Figure 1: Cost of masking: Signing cycle count
divided by d, normalized to a common start at 1
for d = 2. Dilithium data from [24, Table 3].

Blueprint: “Fiat–Shamir with aborts”

Blueprint from Lyubashevsky [15,16],
refined by Bai and Galbraith [17], and
used in Dilithium and this work.

Public key vk = (A, t = A · s+ e) is a
Module Learning With Errors, orMLWE
sample. Additionally, the security proof
uses SelfTargetMSIS (as in Dilithium).

There actually aren’t “secret‐secret”
multiplications in the blueprint! Could we
build it entirely with quasilinear gadgets?

Algorithm 1 PrototypeSign(sk, vk,msg)

Input: A signing key sk = s, a verification key
vk = (A, t), a message msg.

Output: A signature sig of msg under sk.
1: Sample r uniformly in a small set S
2: u := A · r
3: w := Truncate(u) ▷ Commitment
4: c := H(w,msg) ▷ Challenge
5: z := r+ c · s ▷ Response
6: y := A · z− c · t
7: if CheckCondition(z, y) = False then
8: goto Line 1 ▷ Rejection sampling
9: return sig := (c, z)

Raccoon Masking Proof: Composition of Gadgets

Cryptanalytic sensitivity analysis: Which variables need to be protected?
Raccoon signature and key generation functions are composed ofMasking Gadgets
that are individually t‐non‐intefering (t− NI) or t‐strong non‐interfering (t− SNI).
The scheme is designed to be “masking friendly,” so the proofs are quite standard.

Line 1 ×A ApproxShift Decode H, ChalPoly

Refresh

Line 10 Decode Compute h

JsKmsg

h
JrK JuK JwK w cpoly JzK z

JsK

JrK
Figure 2: Raccoon signature function. Colors: gadget proven t− NI, gadget proven t− SNI,
gadget unmasked. Single arrows () and double arrows () represent plain and masked values.

Example: Gadgets, Proofs, and Implementation

Example: O(d log d) masking refresh (re‐randomization) gadget, proven t− SNI [35,36,37].

Algorithm 2 Refresh()

Input: A d‐shared JxK of x ∈ Zq
Output: A fresh d‐shared JxK of x
1: JzK← ZeroEncoding()
2: return JxK = JxK + JzK
Proofs examine correlations between
intermediate variables, input/output.
(Hardware implementation has circuits to
generate masking randomness efficiently
and perform all the ring arithmetic ops.)

Algorithm 3 ZeroEncoding()

Input: A power‐of‐two integer d, a ring Zq
Output: A d‐shared JzK ∈ Zdq of 0 ∈ Zq
1: if d = 1 then
2: return Jz1K = (0) ▷ Order zero.
3: Jz1Kd/2 ← ZeroEncoding(d/2)
4: Jz2Kd/2 ← ZeroEncoding(d/2)
5: JrKd/2 ← Zd/2q ▷ Uniform random vector.
6: Jz1Kd/2 = Jz1Kd/2 + JrKd/2
7: Jz2Kd/2 = Jz2Kd/2 − JrKd/2
8: return JzKd = (Jz1Kd/2 ∥ Jz2Kd/2)

MLWE/MSIS Security Proof and Parameter Selection

Hybrid Lemma 3 bounds a forger AdvSign
A
Qs to

distinguishing public key from uniform AdvPK
A .

Thm. 1 provides a reduction to MSIS. Further
consideration of SelfTargetMSIS is used in
parameter selection (BKZ attack Core‐SVP.)
Thm. 2 reduces PK distinguishability to MLWE.

Parameter Selection
As usual for lattice schemes, parameter selection
for each security target λtarget is a complex
multi‐objective optimization problem.
However, the core problems and high‐level
structure are well‐studied, so we can rely on a
large body of existing research.

Name Raccoon‐λtarget

λtarget 128 192 256
Qs 248 248 249
d 32 ‐ ‐
log q 49† ‐ ‐
log pt 10 6 7
log pw 43 40 42
n 512 ‐ ‐
k 8 11 14
ℓ 3 5 6
ω 19 31 44
B22 214 214 215
B∞ 8 ‐ ‐
|vk| 19 968 30 272 37 632
|sig| 12 000 19 232 23 328

†Across all parameter sets, we set
q = (225 − 218 + 1) · (224 − 218 + 1).

Implementations and Experiments

Portable C Implementation was developed to assess the relative speed to other
algorithms. Unmasked Dilithium runs at about 1/2 time of than Raccoon with d = 2
masking. Unfortunately not many comparison points (no open masked SW Dilithium.)
Artix7 FPGA target implements Raccoon up d = 32 and also has d = 2 proprietary
Dilithium HW. Raccoon is already faster at first order, tens of times faster with higher d.
No secret key leakage was detected in a 200,000‐trace ISO 17825 / “TVLA” style
leakage assessment of Raccoon‐128 (d = 2) signature function on the FPGA target.

Masked Raccoon: Conclusions

Contributions:
1 In this work, we have shown that lattice‐based signature schemes can be masked with
quasilinear complexity – giving the “defenders” a significant asymptotic advantage.

2 Proposed new algorithmic techniques, as well as new proof techniques.
3 Software and hardware experiments show that the performance and concrete leakage
profile of Raccoon are consistent with our theoretical analyses (+new masking records!)

Note: We have further developed the Raccoon framework since this work was submitted and
have found new techniques and applications. Also, the parameter selection has changed.

We are currently working (with an expanded team) to release a new version of Raccoon.

