
Mask Compression: High-Order Masking
on Memory-Constrained Devices

Markku‐Juhani O. Saarinen 1 Mélissa Rossi 2

1 PQShield, UK and Tampere University, Finland 2ANSSI, France

16 August 2023
Selected Areas in Cryptography (SAC) 2023
Fredericton, New Brunswick, Canada

Outline of the Talk

1 Intro: Side‐Channel Attacks & Masking Countermeasures

2 The Basic “Trick” of Mask Compression

3 In Practice: Order‐31 Masked Signatures on FPGA

Side-Channel Attacks

Side‐Channel Attacks (SCA) use external measurements
such as latency (TA), power consumption (SPA/DPA), or
electromagnetic emissions ([S/D]EMA) to extract secrets.
SCA resistance is important for PC, IoT, and mobile device
“platform security” (secure boot, firmware updates, attestation),
authentication tokens, smart cards, HSMs / secure elements..
Common compliance & market requirement for hardware
(Common Criteria / AVA_VAN, FIPS 140‐3 / ISO 17825).

Post‐Quantum Cryptography (PQC) implementations –
e.g. lattice‐based schemes Dilithium and Kyber
inherit all of the security and compliance requirements of
Elliptic Curve or RSA based solutions in applications.

Masking: Non-Invasive SCA Security

Masking: Secret data JsK is processed in d randomized shares si.

Boolean Masking: JsK = s1 ⊕ s2 ⊕ · · · ⊕ sd
Arithmetic Masking: JsK = s1 + s2 + · · ·+ sd (mod q).

Individually each share si is uniformly random, as is any combination if d− 1 shares.

A bit like d‐of‐d secret sharing: Even full knowledge of d− 1 shares
∑d−1

i=1 si reveals
nothing about JsK = ∑d

i=1 si. You need all d shares. We call d− 1 = t the masking order.

If you only have partial or “noisy” measurements (traces), it has been shown that the
number of such observations required to learn JsK grows exponentially with d.
(Chari et al. 1999 – a lot of subsequent theoretical and experimental work supports this.)

Masking Gadgets, Models, and Proofs

Computation on masked shares must be arranged so that intermediate variables have no
statistical correlation with the actual secret variables. They need to appear random too.

Gadgets: Common approach is to first design a set of “gadgets” for simple operations
(logical AND, selection, bit shift, etc.) and compose larger algorithms from them.

Refreshing: Masking security generally requires that a particular secret sharing of
variable JsK can only be used once; after that, it needs to be refreshed (re‐randomized).
Proofs: The proofs can be made in several models; the Ishai‐Sahai‐Wagner (ISW)
t‐probing security requires that any t internal intermediate values don’t reveal secrets.
The noisy leakage model is an alternative; links have been proven between t‐probing
security, noisy leakage model, and information‐theoretic attack complexity bounds.

Computing on Shares: Linear, Quadratic, Quasilinear

Linear operations only need linear O(d) effort to mask:
Addition / subtraction / XOR of masked variables (JsK + JrK).
Multiplication (or Boolean AND, OR) with a scalar constant or a public variable (c · JsK).
Share‐independent linear operations such as NTT (Number Theoretic Transform.)

Non‐linear operations generally require quadratic O(d2) effort:
Multiplication (Boolean AND, OR) between secret variables (JsK · JrK).
Conversions between Arithmetic and Boolean masking representations (A2B and B2A).
Symmetric cryptography like AES or SHA3. Especially these may benefit from Threshold
Implementation (TI) technique, requiring additional share(s) but less randomness.

But some non‐linear operations can be done with quasilinear O(d log d) effort:
Practical quasilinear techniques are known only for a limited number of computational tasks.

Masking in Lattice Crypto: Long Secret Vectors

Example. Most MLWE‐based algorithms are built on arithmetic in rings Zq[X]/(Xn + 1):
Kyber: q = 3329, n = 256 with k ∈ {2,3,4} rings (different security levels) in secret ŝ.
Dilithium: q = 8380417, n = 256 with (k+ ℓ) ∈ {8,11,15} rings in secret (s1, s2).
Raccoon: q = 549824583172097, n = 512 with ℓ ∈ {4,5,7} rings in secret JsK.

(Note that there are other sensitive variables that also require masking, this is just an example.)

Each ring requires at least n · ⌈log2 q⌉ bits. At PQC Category 5, a single share of Kyber’s ŝ
requires 12288 bits, Dilithium’s (s1, s2) is 88320 bits, and Raccoon’s JsK is 175616 bits.
Multiply this with d, the number of shares: First‐order masking requires twice the amount
of storage, and a potential order‐9 (d = 10) implementation would require 10× bits, etc.

However, masked implementations access the secret shares independently of each other;
much of secret key computation is performed serially, first to share 1, then to share 2, etc.

Outline of the Talk

1 Intro: Side‐Channel Attacks & Masking Countermeasures

2 The Basic “Trick” of Mask Compression

3 In Practice: Order‐31 Masked Signatures on FPGA

Consider the Basic Two-Share NI Refresh Gadget

1 Input: (x0, x1), two full shares of JxK.
2 Pick a new, uniform random x′1.
3 Intermediate variable t = x0 − x′1.
4 Compute output x′0 = t+ x1.
5 Output: Refreshed shares (x′0, x′1).

Correctness: We maintain correct maskingJxK = x0 + x1 = x′0 + x′1.

First Order: Each input, output, and
intermediate variable x0, x1, x′0, x

′
1, t is

statistically uncorrelated with secret JxK.

Randomx0x1

Have: (x0, x1)

−

t

+

x′0 x′1
Refreshed: (x′0, x

′
1)

Basic (first-order NI) MaskCompress Trick

1 Input: (x0, x1), two full shares of JxK.
2 Generate a new short seed z′1 ← $.
3 Expand seed to share x′1 = SampleG(z′1).
4 Subtract new random: t = x0 − x′1.
5 Update stored share: x′0 = t+ x1.
6 Output: Compressed pair (x′0, z′1).

Correctness: The compressed representation
(x′0, z

′
1) satisfies x

′
0 + SampleG(z′1) = x0 + x1.

First Order: Uniform, uncorrelated variables.

Almost Half Size: The second full share x′1
can be discarded. Its 256‐bit seed z′1 suffices.

Random Z256
2

Sample Zn
qx0x1

Have: (x0, x1)

− (x′1)

+

x′0 z′1
Store: (x′0, z

′
1)

Basic (first-order, NI) LoadShare

1 Input: Compressed masking (x0, z1):
One full share x0 and one seed z1.

2 Generate a new short seed z′1 ← $.
3 Expand it to share x′1 = SampleG(z′1).
4 Subtract new random: t = x0 − x′1.
5 Expand stored seed x1 = SampleG(z1).
6 Update stored share: x′0 = t+ x1.
7 Output: Expanded shares JxK = (x0, x1),
refreshed “compressed” pair (x′0, z

′
1).

First Order: Each input, output, and
intermediate variable is statistically uniform
and uncorrelated with secret x = x0 + x1.

Random Z256
2

Sample Zn
qx0z1

Load: (x0, z1)

−Sample Zn
q (x′1)

+

x′0 z′1x1

Updated: (x′0, z
′
1)(x0, x1)

Properties

These basic MaskCompress() and LoadShare() gadgets generalize to d = t+ 1 shares
(Alg. 1 and 2 in the paper.) Complexity is linear: d shares can be accessed in O(d) time.

Secure memory shrinks from d · |G| to |G|+ (d− 1)λ bits, where |G| is the share size,
(e.g., 5888 bits for the Dilithium ring) and λ is a security parameter (e.g., 256 bits.)

These gadgets are shown to be t‐Non‐Interfering (NI), which also indicates t‐probing
security in the Ishai‐Sahai‐Wagner (ISW) model.

Strong Non‐Interference (SNI) is a property that allows gadgets to be combined more
freely with other gadgets while maintaining security (“composability”.) We also present
SNI gadgets SNIMaskCompress() and SNILoadShare() (Algorithms 4 and 5).
Unfortunately, these require quadratic O(d2) time to access d shares.

How to use it? “Share access API.”

Implement a “share access gadget library” with an API for compressing /
uncompressing shares. Modify masked implementation to access shares with this API.

Hardware implementation of Kyber, Dilithium (and Raccoon) needs a fast, deterministic
seed expander like SampleG(seed) anyway – to expand the public “lattice” matrix A.

You don’t need to compress everything. Often mask compression makes sense only
for longest sensitive variables, and only outside computationally intensive loops.

It’s really generic: We have described arithmetic masking, but one can equally well use
Boolean masking. Especially code‐based and multivariate cryptography has large
algebraic objects (vectors, matrices over finite fields) where the technique is applicable.

Outline of the Talk

1 Intro: Side‐Channel Attacks & Masking Countermeasures

2 The Basic “Trick” of Mask Compression

3 In Practice: Order‐31 Masked Signatures on FPGA

Masked Raccoon: Side-Channel Secure Signatures

Raccoon is a lattice‐based signature
scheme on the NIST PQC “On‐Ramp.”
(The paper discusses a little bit earlier
Raccoon version from IEEE SP 2023.)

Similar to Dilithium but designed for
efficient (quasilinear‐time) high‐order
masking. Parameters up to d = 32.

Raccoon has SNI proofs, but for the
demonstration, we just use the NI
gadgets to achieve overall quasilinear
speed (we know the composition..)

You may ask: Why is Dilithium Hard To Mask?

Dilithium requires a masked SHAKE;
mixes bit manipulations with (mod q)
arithmetic, requiring A2B and B2A; has
masked comparisons / rejection sampler.

(For these non‐linear operations only
quadratic O(d2) gadgets are known.)

Raccoon avoids quadratic operations.
The cost of additional shares is nearly
constant. (Cycles/share even decreases
initially due to a small constant overhead.)

2 4 8 16 32
0

0.5

1

1.5

2

Number of shares d

Cy
cl
es
/
sh
ar
e
(s
ca
le
d
to

d
=
2.
)

Raccoon Sign
Dilithium Sign

Figure 1: Cost of masking: Signing cycle count
divided by d, normalized to a common start at 1
for d = 2. Dilithium data from [24, Table 3].

Raccoon Masking Proof: Composition of Gadgets

Cryptanalytic sensitivity analysis: Which variables need to be protected?
Raccoon signature and key generation functions are composed ofMasking Gadgets
that are individually t‐non‐intefering (t− NI) or t‐strong non‐interfering (t− SNI).
The scheme is designed to be “masking friendly,” so the proofs are quite standard.

Line 1 ×A ApproxShift Decode H, ChalPoly

Refresh

Line 10 Decode Compute h

JsKmsg

h
JrK JuK JwK w cpoly JzK z

JsK

JrK
Figure 2: Raccoon signature function. Colors: gadget proven t− NI, gadget proven t− SNI,
gadget unmasked. Single arrows () and double arrows () represent plain and masked values.

Raccoon Signing With Mask Compression “API Calls”

Input: A masked key JskK, a message msg
Output: A signature sig of msg under sk
1: JrK← (Rℓ

q)
d ▷ A random mask set.

2: JuK := A · JrK ▷ LoadShare, MaskCompress.
3: JuK← Refresh(JuK) ▷ LoadShare (not SNI).
4: JwK := ApproxShiftq→qw(JuK) ▷MaskCompress.
5: w := Decode(JwK) ▷ FullLoadShare.
6: chash := H(w,msg) ▷ Not masked.
7: cpoly := ChalPoly(chash) ▷ Not masked.
8: JsK← Refresh(JsK) ▷ LoadShare (not SNI).
9: JrK← Refresh(JrK) ▷ LoadShare (not SNI).
10: JzK := cpoly · JsK + JrK ▷MaskCompress.
11: z := Decode(JzK) ▷ FullLoadShare.

12: y := A · z− pt · cpoly · t
▷ Unmasked to the end.

13: ytop := ⌊y⌋q→qw
14: h := w− ytop

15: if (∥h∥2 > B2) or
(∥h∥∞ > B∞) then

16: goto 1
17: return sig := (chash, z,h)

Annotated in comments with mask compression gadgets for loading and storing shares
where needed. Access to shares is in order 0,1, .., d− 1 at every masked step 1–11.

System Design

The project was built by modifying and expanding components from an existing
(commercial) first‐order masked Kyber & Dilithium hardware implementation.

We already had fast seed expansion:
For SHAKE‐128/256 based SampleG the unit has a 24‐cycle Keccak permutation,
connected to uniform (mod q) rejection sampling. DMA output to work memory.

Other: RV32C control core, masking random number generator, communication
peripherals, and a lattice unit with direct memory access via a 64‐bit bus. Fast, native
support for Raccoon’s mod q and NTT arithmetic, as well as masking.

High‐level algorithm was implemented in C to run on the RISC‐V core on the target.
The cryptographic hardware is accessed via memory‐mapped control registers.

Hardware Realization and Performance
On an XC7A100T FPGA: 10,638 Slice LUTs (16.78%), 4,140 Slice registers / Flip Flops,
(3.26%) and only 3 DSPs (as logic was used for multipliers – ASIC‐oriented design).
Rated for 78.3 MHz, and ran with 24ns (41.7 MHz) clock cycle for trace acquisition.

Operated well with 128 kB of SRAM (Block RAM), while at least 2000 kB would have
been required at d = 32 without compression. Artix 7 doesn’t have such memory
resources. The secret key JsK alone shrunk from 294 kB to 12.1 kB.

Table 1: FPGA cycle counts at various side‐channel security levels.

Algorithm Shares Keygen() Sign() Verif()
Raccoon‐128 d = 2 1,366,000 2,402,000 1,438,000
Raccoon‐128 d = 4 2,945,000 3,714,230 1,433,034
Raccoon‐128 d = 8 6,100,000 6,345,000 1,389,000
Raccoon‐128 d = 16 12,413,000 11,605,000 1,389,000
Raccoon‐128 d = 32 25,073,000 22,160,000 1,393,000

Leakage Assessment (“TVLA Sign-Off”)

The FPGA target was on a ChipWhisperer CW305 board for good‐quality power trace
acquisition. PicoScope 2208B oscilloscope at the 24ns sampling frequency (same as
target clock); more than 22 million samples per Raccoon‐128 trace at d = 32.

At N=20,000 traces, the maximum t‐value was 5.55, well under the threshold and
corresponding to P‐value 0.47. At N=10,000 traces, the test result was t = 5.43.
TVLA only detects first‐order leakage so we tried d = 2 too (N = 200,000 traces.)

We also verified that leakage detection is functional by disabling countermeasures in
various ways; spikes rapidly appear in those cases.

Conclusions

Mask Compression is a technique where one stores random “seed” for some large
masking shares and expands the seeds only when needed by computation.
Mask Compression allows provable side‐channel security properties to be retained.
Practical – sometimes necessary – especially for high‐order masking of PQC.
Experiments: FPGA implementation of Order‐31 Raccoon‐128 signature function,
with significant resource savings. ISO 17825 / “TVLA” style leakage assessment.

200,000 TVLA t‐traces of Raccoon‐128 d = 2 with mask compression.

