
Benchmarking RISC-V
Post-Quantum Crypto
Markku-Juhani O. Saarinen
<markku-juhani.saarinen@tuni.fi>

RISC-V Summit 2023 / November 8, 2023

Talk Outline

1. Sitrep: Post-Quantum Cryptography Standards

2. Kyber and Dilithium quantitative analysis on RISC-V

3. New Vector Instructions proposed for PQC / modern crypto

| 2RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

One-Minute Introduction to PQC

Post-Quantum Cryptography (PQC) = Cryptography that is not
vulnerable to attacks by quantum algorithms when bigger
quantum computers are built.

Symmetric cryptography (AES, SHA2, SHA3) is not vulnerable.
There is no need for Quantum RNGs. Most of the current RISC-V
Crypto Extensions (Zk*) are fine.

RSA (factoring) and Elliptic Curve (ECDL) cryptography has to go.
Quantum algorithms (Shor's and Regev's) break these very
efficiently -- polynomial time, increasing key size not much help.

After 7 years of analysis, newer PQC / Quantum-Secure (lattice-
based, code-based, hash-based, ..) signatures and key
establishment standards are being rolled out into applications.

RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto | 3

PQC Standards FIPS 203 ML-KEM ("Kyber") for Key Establishment.
Replaces EC Diffie-Hellman key exchange (example: TLS
handshake), ElGamal and RSA in Encryption.

FIPS 204 ML-DSA ("Dilithium") for Signatures. Replaces
RSA and ECDSA signatures in web authentication, PKI
certificates, software updates.

FIPS 205 SLH-DSA ("SPHINCS+") Stateless Hash-based
Digital Signature Algorithm. Likely to see use in "root of
trust" applications, firmware updates.

Initial Public Draft (IPD) Standard Specifications (2023-08-
24): https://csrc.nist.gov/pubs/fips/203/ipd (replace 204,
205..)

FIPS 206 FN-DSA ("Falcon") IPD will follow later (2024?)
Also: Round 4 KEMs, and the "signature on-ramp."
These are not primary algorithms.

PQC can be also used in
"hybrid" modes alongside
legacy crypto algorithms.

| 4

The primary standards are
lattice algorithms from the

"PQ Crystals" suite.

RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

https://csrc.nist.gov/pubs/fips/203/ipd

This is the CNSA (DoD & IC) transition timeline. The U.S. Federal Government and
some civilian organization have their own timelines. Note "default" by 2025-27..

Talk Outline

1. Sitrep: Post-Quantum Cryptography Standards

2. Kyber and Dilithium quantitative analysis on RISC-V

3. New Vector Instructions proposed for PQC / modern crypto

| 6RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Kyber Quant: Implementations Measured

Implementation 1: Reference / PQClean code (Optimized C)

Used (or adopted in some form) by many vendors. Example: via Rust
wrappers now in libsignal / PQXDH of production Signal (Sep 2023.)

Implementation 2: BoringSSL / Google code (Optimized C)

Production code: In Chrome 116+ (Aug 2023), Android 14 (Oct 2023.)

Benchmarked Kyber768, which is used in current draft TLS standard.

Ephemeral Key establishment = sum of KeyGen + Encaps + Decaps.

| 7RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Kyber: Mostly Keccak + mod 3329 arithmetic

Reference Kyber768: 2.26M Insn

KG 600k + Enc 734k + Dec 921k

BoringSSL Kyber768: 2.26M Insn

KG 789k + Enc 978k + Dec 491k

| 8

NTT, 13.4%

INTT, 15.9%

Keccak, 24.1%

BaseMul,
21.1%

PolyRed, 8.0%

(Rest), 17.5%

NTT

INTT

Keccak

BaseMul

PolyRed

(Rest)

Instret (with vlen:128,elen:64) - LLVM 18 snapshot, Oct 2023. -Ofast -march=rv64gcv_zbb (zvk)

NTT, 11.5%

INTT, 6.6%

Keccak, 67.4%

BaseMul, 0.6%

(Rest), 13.8%

NTT

INTT

Keccak

BaseMul

(Rest)

RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

"Keccak"
~½ of PQC Perf

Why 67% of Keccak in BoringSSL but
only 24% in Reference Kyber?🤔

Same Kyber768: Same number (~132) of
Keccak f1600 calls in KG+Encap+Decap.

BoringSSL's f1600 is just pretty slow.

BoringSSL: 11440 Insn (rv64gcv_zbb)

Reference: 4123 Insn (rv64gcv_zbb)

Without Zbb/Zkn: 6127 Insn (rv64gcv)

Crypto vector ext's: no impact currently.

SHA3 & SHAKE (FIPS 202) are
built from Keccak f1600
keyless permutations.

- Fast scalar code fits the
1600-bit state into 25*64
registers, unrolls 1 round.

- Use RORI and ANDN from
bitmanip (or krypto) for
additional +50% perf!

- Vectorization is complex.

| 9RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Another ½ of Kyber: Mod 3329 Arithmetic

- The "structured lattice" ring arithmetic (NTT, INTT) in Kyber uses a single
fixed modulus q = 0xD01 (at all security levels). Often stored as 16-bit.

- Modular arithmetic in finite field GF(q): Every multiplication requires a
Montgomery and/or Barrett reduction step (rem[u] not constant time.)

- Implementations use different techniques. But it's the same Kyber768,
same number of NTT (×15), INTT (×9), and BaseMul / ScalarMul (×36).

- NTT/INTT and ring arithmetic = vectorizable butterfly operations.
BoringSSL already benefits a bit from compiler autovectorization! 🔍😯

- We will have to look esp. at vectorizing the A matrix rejection sampler. The
rest of Kyber cycles is are mostly spent on Serialization/Deserialization etc.

| 10RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Vectorized Barrett Reduction is great..

BoringSSL kyber.c reduce()

// constant time reduce x mod kPrime using Barrett
reduction. x must be less

// than kPrime + 2×kPrime².

static uint16_t reduce(uint32_t x) {

assert(x < kPrime + 2u * kPrime * kPrime);

uint64_t product = (uint64_t)x * kBarrettMultiplier;

uint32_t quotient = (uint32_t)(product >> kBarrettShift);

uint32_t remainder = x - quotient * kPrime;

return reduce_once(remainder);

}

Autovectorized reduce()

; uint16_t odd = reduce(step_root * s->c[j + offset]);

1481a: b3 07 77 01 add a5, a4, s7

1481e: 07 d4 87 22 vl2re16.v v8, (a5)

14822: d7 76 20 0d vsetvli a3, zero, e32, m4, ta, ma

14826: 57 26 83 4a vzext.vf2 v12, v8

1482a: 57 64 ca 96 vmul.vx v8, v12, s4

1482e: 57 70 b0 0d vsetvli zero, zero, e64, m8, ta, ma

14832: 57 28 83 4a vzext.vf2 v16, v8

; uint64_t product = (uint64_t)x * kBarrettMultiplier;

14836: 57 68 08 97 vmul.vx v16, v16, a6

1483a: 57 70 20 0d vsetvli zero, zero, e32, m4, ta, ma

1483e: 57 36 0c b3 vnsrl.wi v12, v16, 24

etc ...

| 11

.. but (mod q) multiply-add is
still half-dozen instructions.

RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Dilithium Quant Analysis Targets

Reference / PQClean code (Optimized C)

Code adopted by many projects, including PKI, HSM vendors.

- Param set ML-DSA-44 (Level 2) expected to be popular in PKI.

- Param set ML-DSA-87 (Level 5) has been selected for CNSA.

- Signing is probabilistic; We report average over 100.

- Note: (TLS) handshake has more verifications than signing.

- Dilithium KeyGen is fast -- roughly the same speed as verify
(but this is not very important with signature schemes.)

| 12RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Dilithium: Mod 8380417 arithmetic, Keccak

ML-DSA-44 Sign: Avg 4.60M Insn

ML-DSA-87 Sign: Avg 8.37M Insn

ML-DSA-44 Verify: 1.16M Insn

ML-DSA-87 Verify: 3.09M Insn

| 13

Instret (with vlen:128,elen:64): LLVM 18 snapshot, Oct 2023. -Ofast -march=rv64gcv_zbb (zvk)

NTT, 18.1%

INTT, 31.7%

Keccak, 17.9%

BaseMul,
11.4%

(Rest), 20.8%

NTT

INTT

Keccak

BaseMul

(Rest)

NTT, 19.7%

INTT, 11.0%

Keccak, 35.5%

BaseMul, 9.4%

(Rest), 24.4%

NTT

INTT

Keccak

BaseMul

(Rest)

RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Dilithium instruction mix: Similar to Kyber

- With Dilithium, q = 0x7FE001 = 223-213+1 is the special fixed
prime used in ring arithmetic and NTT "butterfly" ops.

- Keccak is the same (for SHA3 and SHAKE functions.)

- Most of the rest of the cycles: Serialization and complex but
vectorizable "bit-dropping" arithmetic.

Opinion: With Kyber & Dilithium as FIPS standards, I'm
comfortable fixing the two q primes in hardware if there are

substantial performance/energy/security gains.

| 14RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Some RISC-V Dilithium NTT Optimization

To optimize, I inlined the Dilithium reduction functions, utilizing some
vectorization and almost halving the signing instruction count to:

ML-DSA-44 Sign: Avg. 2.36M Insn. Verify: 776k Insn.

After opt, modular mul (Montgomery) still has ~6 arithmetic instructions:

vsext.vf2 vmul.vx vsra.vx vmul.vx vmacc.vx vnsrl.wx

Observation: Vectorized small-integer modular arithmetic seems to always
require widening, 1+ additional reduction multiplications, narrowing ops.

| 15RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Talk Outline

1. Sitrep: Post-Quantum Cryptography Standards

2. Kyber and Dilithium quantitative analysis on RISC-V

3. New Vector Instructions proposed for PQC / modern crypto

| 16RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Number Theoretic Transform Extension

Proposal 1: Vector Single-Width modular Integer multiply: vmulq

vmulq.vv vd, vs1, vs2, vm # vd[i] = (vs2[i] * vs1[i]) % q

vmulq.vx vd, rs1, vs2, vm # vd[i] = (vs2[i] * x[rs1]) % q

-> No external widening/narrowing required, replaces 5 or 6 instructions.

-> For fixed q values, efficient, const-time hardwired reduction is possible.

-> Impact: More than triples Kyber and Dilithium NTT performance.

How? Hardwire SEW=16: q=0xD01, else if SEW=32: q=0x7FE001 for vmulq ?

Alternatives: Special “mod q” fixed-point rounding mode in vxrm and use vector
fixed-point instructions? Or Would modular single width modular multiply-add be
even faster? (“q” versions: vmaccq vnmsacq vmaddq vnmsubq).

| 17RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Further Speedup of Keccak?

- Dedicated hardware does a Keccak f1600 permutation in 24 cycles
(with fast clock). Without vectorization 4000+ RV64 instructions, with
“maximal” general-purpose vector optimization probably still hundreds.

- Shake/Keccak is important elsewhere too: SPHINCS+ (FIPS 205 SLH-DSA)
and older XMSS, LMS (NIST SP 800-208) signature algs are 95% hashing.

There have been some academic proposals for RISC-V Keccak:

- Example: have a full f1600 permutation round in hardware and make it
visible via the the double-precision floating point register file (!)

- Also: Instructions for 5x5 slides, specific rotates, etc. Each round
requires many "Keccak insns" (I don't think this is necessary.)

| 18RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Proposed Keccak Permutation Extension

- Vector Crypto (Zvk) already has vandn, vrol variants which allow
substantial speedup and parallelized instances.

- Would need optimize vrgather/vrgatherei .. still quite complex.

- Proposal 2: Simply a dedicated 1600-bit Keccak Round(s) Instruction.

vkeccakp.wi vd, vs2, imm # imm = num rounds

- Computes one or more rounds Rnd(A, ir) of Keccak-p[1600,24].

- Apparent advantages in having this as a multi-round (“all-rounds”) due
to the overhead of getting 1600 bits from/to a register group.

| 19RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Conclusions

Two main suggestions for standard FIPS PQC Algorithms:

1. Vector single-width modular multiply instruction, q={Kyber, Dilithium}

2. (Multi-round) Keccak f1600 permutation on a vector register group

- Substantial speedup: Help to establish thousands of TLS/QUIC..
connections per second, minimize connection latency.

- Proposed extensions may be initially worthwhile mainly on network
accelerators and some types of high-end servers.

- Keccak/SHA3/SHAKE is assumed to be widely useful in the future.

| 20RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto

Thank You!
Questions?

RISC-V Summit 2023: Benchmarking RISC-V Post-Quantum Crypto | 21

	Slide 1: Benchmarking RISC-V Post-Quantum Crypto Markku-Juhani O. Saarinen <markku-juhani.saarinen@tuni.fi>
	Slide 2: Talk Outline
	Slide 3: One-Minute Introduction to PQC
	Slide 4: PQC Standards
	Slide 5
	Slide 6: Talk Outline
	Slide 7: Kyber Quant: Implementations Measured
	Slide 8: Kyber: Mostly Keccak + mod 3329 arithmetic
	Slide 9: "Keccak" ~½ of PQC Perf
	Slide 10: Another ½ of Kyber: Mod 3329 Arithmetic
	Slide 11: Vectorized Barrett Reduction is great..
	Slide 12: Dilithium Quant Analysis Targets
	Slide 13: Dilithium: Mod 8380417 arithmetic, Keccak
	Slide 14: Dilithium instruction mix: Similar to Kyber
	Slide 15: Some RISC-V Dilithium NTT Optimization
	Slide 16: Talk Outline
	Slide 17: Number Theoretic Transform Extension
	Slide 18: Further Speedup of Keccak?
	Slide 19: Proposed Keccak Permutation Extension
	Slide 20: Conclusions
	Slide 21: Thank You!

