
RISC-V Cryptography Evolution:
High Assurance Cryptography (HAC TG)
Post-Quantum Cryptography (PQC TG)

Markku-Juhani O. Saarinen (Tampere University, Finland)
G. Richard Newell (Microchip Technology, USA), Nicolas Brunie (SiFive, USA)

Real World Crypto Symposium
Toronto - March 25, 2024

From the top (SoC view): We often want to
remove the CPU from the encrypt loop..

• Perform disk encryption at disk or
storage controller (transparently.)

• Offload bulk symmetric network
encryption to the NIC or Modem.

• SoC-wide Platform Security crypto
isolated in a Root of Trust (RoT).

• CPU: Left with (TLS) handshakes,
asymmetric ops, crypto in apps.
Need to speed them up in the CPU.

• This is really, really simplified..

Instruction Set Architectures:
Everything Old is New Again

RISC-V is a lot like SPARC, MIPS, PowerPC, PA-RISC, DEC
Alpha.. A bit less like ARM, and much, much less like x86.

RISC-V Vector (v-extension) is a "real" vector architecture
a la Cray-I (1976), not fixed-length SIMD (AVX2, Neon).

In RISC-V, almost everything is an extension (other ISAs
expand too, with "features".) Two kinds of extensions:

- Custom: DIY instructions at custom opcodes.

- Ratified: Consistent specs, reserved opcodes,
simulator, compiler, operating system, support, ...

Org (RISC-V International)

- Oversees ISA Development, Certification. 4000 Members in 70 Countries.

- Big open-source/technical standardization org: Committees galore.

- Crypto "TGs" are under the Unprivileged Spec "IC" and Security "HC."

Some basic rules for new RISC-V instructions:

- Instructions need to demonstrate substantial, measurable advantages.

- Instructions need to fit into the big-picture RISC-V architecture.

- You need to explicitly contribute the instruction to the RISC-V ISA
(membership.) This is to protect everyone against IP / patent problems.

Cryptography Extensions ("K")

Done: Scalar Crypto (Ratified 2021): AES, SHA2, SM3, SM4, CMUL (GCM) with
32- and 64-bit scalar registers. + "Constant time" & Entropy Source.

Done: Vector Crypto (Ratified 2023): AES, SHA2, SM3, SM4, GCM with vector
registers: Make bulk crypto even faster with parallel AES-GCM etc.

-> many of these now In Linux Kernel, OpenSSL, going into Android Platform

Being worked on:

High Assurance Crypto TG (From late 2023): "Full-rounds" AES allowing
emission/power side-channel security. Key management features.

Post-Quantum Crypto TG (From late 2023): What can we do to assist standard
PQC algs (notably FIPS 203,204,205 - Kyber, Dilithium, SPHINCS+) ?

Waiver Completion, Software Enablement

Plan Ecosystem Development

Ratification-ready Tasks

45 Day Public Review
Fix Ambiguities in Spec &

ISA bugs
TSC Ratification
Review & Vote

Specification
Development & Freeze

Tasks

No Feature Additions. No Changes Except to Resolve
Public Review Issues.

Errata Only

Ratification-ReadyFreeze

Propose Task
Group

TSC Approved & BoD RatifiedPublic Review Complete

New or Changed Features Specification Development become a new extension – Go back to Inception

V0.1-V0.99 V1.0-rc1 V1.0-rcN

HC Preliminary
Charter Approval

Charter & Chairs
Approval (TSC)

Inception

V1.0 (ratified)

Candidate MergedAccepted ReleasedReviewed

Software Development
(See “Software Development Lifecycle” slide)

Ratification Plan & Begin
Work

Develop

Rat. Plan
Approval
(Chairs)

Process..

HAC TG: High Assurance Cryptography

RISC-V HAC TG is interested at cryptography instructions with
additional security features such as side-channel resistance.

- Regular scalar and vector AES extensions leak side-channel
information even in complex SoCs (https://ia.cr/2022/230).

- To use techniques like masking we will need a Full-rounds AES.

- We'd like to also remove "plaintext" secret keys from memory and
the register file (use handles of some kind). Cold boot attacks etc.

Similar features already exist in other ISAs. Need new ideas..

https://ia.cr/2022/230

PQC TG: Post-Quantum Cryptography

- Kyber (FIPS 202 ML-KEM) and Dilithium (FIPS 203 ML-DSA) are just as
fast -- or faster -- than { RSA, ECDSA, ECDH } on current RVV CPUs.

- Due to flexibility required (e.g. hybrid crypto) and external interface
complexities, asymmetric crypto is likely to remain in main CPUs.

- PQC TG evaluates helper instructions. To be considered, substantial
perf advantages must be demonstrated, without too much cost.

Evaluation metric:

- What matters: End-to-end latency (µs/op) - when instantiated in a
typical application (most often a TLS stack; server or client.)

Kyber: Vectors (mod 3329) + Keccak

Reference Kyber-768: 2.26M Insn
KG 600k + Enc 734k + Dec 921k

NTT, 13.4%

INTT, 15.9%

Keccak, 24.1%

BaseMul,
21.1%

PolyRed, 8.0%

(Rest), 17.5%

NTT

INTT

Keccak

BaseMul

PolyRed

(Rest)

Instret (with vlen:128,elen:64) - LLVM 18 snapshot, Oct 2023. -Ofast -march=rv64gcv_zbb (zvk)

Compute in NIST Lattice Crypto:

- Keccak i.e. SHA3/SHAKE operations.
Can be even >50% of overall cycles.

- Number Theoretic Transforms.
Vectorizable functions (256 x 16/32.)

- Other polynomial arithmetic. Mostly
integer vectors; shifts, adds, sub.

- Samplers (rejection and CBD),
rounding, "packing" (serialize).

ML-DSA-44 Sign: Avg 4.60M Insn

ML-DSA-87 Sign: Avg 8.37M Insn

ML-DSA-44 Verify: 1.16M Insn

ML-DSA-87 Verify: 3.09M Insn

Instret (with vlen:128,elen:64) - LLVM 18 snapshot, Oct 2023. -Ofast -march=rv64gcv_zbb (zvk)

NTT, 18.1%

INTT, 31.7%

Keccak, 17.9%

BaseMul,
11.4%

(Rest), 20.8%

NTT

INTT

Keccak

BaseMul

(Rest)

NTT, 19.7%

INTT, 11.0%

Keccak, 35.5%

BaseMul, 9.4%

(Rest), 24.4%

NTT

INTT

Keccak

BaseMul

(Rest)

Dilithium: Vectors (mod 8380417) + Keccak

Bottleneck 1: Keccak f1600 properties

- SHA3 and SHAKE (FIPS 202) are built on the 25×64=1600-bit Keccak
permutation. ~50% of ML-KEM, ML-DSA Cycles, >90% SLH-DSA here.

- 24 Rounds. The rounds have an incredibly short critical path in
hardware (fast hw!), but vectorization is disappointing (<2× scalar?)

Bottleneck 1: A Proposal for Keccak

Keccak state is awkward to fit into vector registers and architecture:

- Seemingly VLEN ≥ 256 is required (the max LMUL value is 8.)

- Element EEW = 64. Element group EGS = 32, LMUL = 2048 / VLEN:

- VLEN = 256: LMUL = 8: A group of 8 vector registers of 256 bits.

- VLEN = 512: LMUL = 4: A group of 4 vector registers of 512 bits.

Multi-round instruction (due to complexity of accessing 25 words):

vkeccak.vi vd, vs2, imm # imm = 5-bit num rounds

Computes 24 rounds of Keccak-p[1600,24] permutation with imm=24.

SPHINCS+: Impact on FIPS 205 SLH-DSA

FIPS 205 SLH-DSA "Stateless Hash-Based Digital Signature Standard"
(a.k.a. SPHINCS+) has two parameter instantiations, SHA2 and SHAKE.

SLH-DSA-SHAKE is made at least 20 times faster by vkeccak.vi.

Note that holding the Keccak state in vector registers allows "padding
template" forming and Winternitz iteration (https://ia.cr/2024/367).

Similar speedup for SHAKE variants of LMS & XMSS in SP 800-208.

https://ia.cr/2024/367

Bottleneck 2: Number Theoretic Transforms

- Number Theoretic Transforms (NTT) are used by Kyber and
Dilithium for fast polynomial ring ℤq[x]/(x256 + 1) multiplication.

To justify new instructions for NTT and ring arithmetic,

we need to understand the limits of existing RISC-V Vector.

- NTT is a divide-and-conquer algorithm. This is the finite field analog
of FFT, DFT, etc, a common pattern for vectorization.

- Observation: Even though "hand" vectorization of Keccak didn't
have significant returns, NTT is sped up even by autovectorization.

"PQCMark" [sic]: BoringSSL Kyber & Dilithium

- LLVM / Clang (v19 snapshot, March 2024) RISC-V Cross-Compilers.

Clang 18.1+ has RISC-V Vector Crypto support (no longer "experimental".)

- Modified Spike ("golden" RISC-V software sim) with a patch from Nicolas
Brunie that provides a Keccak instruction, state in element group in/out.

- For "real-life" code, checked out commit cf4f615 (March 2024) of BoringSSL,
the standard cryptography stack in Google land: Android, Chromium, etc.

Has Kyber-768 (≈ ML-KEM-768) and (had) Dilithium3 (≈ ML-DSA-65).

- Modified keccak_f() in crypto/keccak/keccak.c to optionally use the
Keccak instruction (simple wrapper, not the ideal way to use it.)

https://boringssl.googlesource.com/boringssl/+/cf4f615d706d54fca9323fb1595d88f7ee2d7517

Studies on RISC-V (Auto)vectorization

Clang 19.0git vectorizers (https://llvm.org/docs/Vectorizers.html) have
reporting flags (e.g. -Rpass-analysis=loop-vectorize) to help identify
reasons for failed/successful vectorization.

- I Inlined some functions to make them available in the same compilation
unit and removed some blockers (e.g. an assembler "const-time barrier".)

- It's still "constant-time" and It is still "ANSI C"; no pragmas or RVV intrinsics.
The built-in cost model still makes the actual vectorization decisions.

Findings: In Kyber and Dilithium (Reference & BoringSSL code), Clang can
vectorize Barrett reduction, Montgomery reduction, and even a plain
remainder (into constant-time shifts and adds). Typically 6 to 10 instructions.

https://llvm.org/docs/Vectorizers.html

BoringSSL's kyber.c, reduce()

// constant time reduce x mod kPrime using Barrett
reduction. x must be less

// than kPrime + 2×kPrime².

static uint16_t reduce(uint32_t x) {

assert(x < kPrime + 2u * kPrime * kPrime);

uint64_t product = (uint64_t)x * kBarrettMultiplier;

uint32_t quotient = (uint32_t)(product >>
kBarrettShift);

uint32_t remainder = x - quotient * kPrime;

return reduce_once(remainder);
}

// kyber.c:177 function scalar_ntt(): uint16_t
odd = reduce(step_root * s->c[j + offset]);

da8: vl2re16.v v8,(a0)

dac: vsetvli a1,zero,e32,m4,ta,ma

db0: vzext.vf2 v12,v8

db4: vmul.vx v8,v12,s7

db8: vsetvli zero,zero,e64,m8,ta,ma

dbc: vzext.vf2 v16,v8

dc0: vmul.vx v16,v16,a6

dc4: vsetvli zero,zero,e32,m4,ta,ma

dc8: vnsrl.wi v12,v16,24

dcc: vmadd.vx v12,t0,v8

dd0: vsetvli zero,zero,e16,m2,ta,mu

dd4: vnsrl.wi v8,v12,0

dd8: vadd.vx v10,v8,s6a … … …
.. but (mod q) multiply-add is
still half-dozen instructions.

Autovectorization Example

Instruction counts certainly drop..
BoringSSL Non-vector ISA + Bitmanip ext. + Vectors + Keccak Insn.

Kyber-768 rv64gc +_zbb +v_zbb_zvbb + "zvkeccak"

Key Generation 667,117 567,987 383,341 193,853

(Parse PK +) Encaps 876,970 747,789 432,228 194,179

Decapsulate 765,651 713,088 294,174 214,501

Dilithium3 rv64gc +_zbb +v_zbb_zvbb + "zvkeccak"

Key Generation 2,385,466 1,882,970 1,441,127 613,974

Signing 12,076,148 10,377,617 6,195,554 4,824,263

Signature Verify 2,749,363 2,221,302 1,650,091 884,683

--varch=vlen:256,elen:64 Flags: -Ofast -DNDEBUG

One possible NTT Acceleration Extension

Proposal 2: Vector Single-Width modular Integer multiply: vmulq

vmulq.vv vd, vs1, vs2, vm # vd[i] = (vs2[i] * vs1[i]) % q

vmulq.vx vd, rs1, vs2, vm # vd[i] = (vs2[i] * x[rs1]) % q

-> No external widening/narrowing required, replaces 5 or 6 instructions.

-> For fixed q values, efficient, hardwired reduction is possible.

-> Impact: Up to 50% increase Kyber and Dilithium NTT performance (?)

How? Hardwire SEW=16: q=0xD01, else if SEW=32: q=0x7FE001 for vmulq ?

Alternatives: Special “mod q” fixed-point rounding mode in vxrm and use
vector fixed-point instructions? Same, but modular multiply-add?

Conclusions

- Vector Crypto (ratified in 2023) has been picked up in main
Application-class processor profiles and in RISC-V Android.

- New: High Assurance (HAC) and Post-Quantum (PQC) task groups.

- HAC is working on a full-rounds AES for side-channel security goals,
and also key management / "key hiding."

- PQC is doing quantitative analysis with FIPS standards for Kyber,
Dilithium, and SPHINCS+. Vectors and bitmanip already help a lot.

- Keccak instruction seems like a winner, giving significant speedups
for all PQC algorithms. NTT acceleration may also be considered.

Thank You!
Questions?

	Slide 1: RISC-V Cryptography Evolution: High Assurance Cryptography (HAC TG) Post-Quantum Cryptography (PQC TG) Markku-Juhani O. Saarinen (Tampere University, Finland) G. Richard Newell (Microchip Technology, USA), Nicolas Brunie (SiFive, USA)
	Slide 2: From the top (SoC view): We often want to remove the CPU from the encrypt loop..
	Slide 3: Instruction Set Architectures: Everything Old is New Again
	Slide 4: Org (RISC-V International)
	Slide 5: Cryptography Extensions ("K")
	Slide 6
	Slide 7: HAC TG: High Assurance Cryptography
	Slide 8: PQC TG: Post-Quantum Cryptography
	Slide 9: Kyber: Vectors (mod 3329) + Keccak
	Slide 10: Dilithium: Vectors (mod 8380417) + Keccak
	Slide 11: Bottleneck 1: Keccak f1600 properties
	Slide 12: Bottleneck 1: A Proposal for Keccak
	Slide 13: SPHINCS+: Impact on FIPS 205 SLH-DSA
	Slide 14: Bottleneck 2: Number Theoretic Transforms
	Slide 15: "PQCMark" [sic]: BoringSSL Kyber & Dilithium
	Slide 16: Studies on RISC-V (Auto)vectorization
	Slide 17: Autovectorization Example
	Slide 18: Instruction counts certainly drop..
	Slide 19: One possible NTT Acceleration Extension
	Slide 20: Conclusions
	Slide 21: Thank You!

