
ACCELERATING SLH-DSA BY TWO ORDERS
OF MAGNITUDE WITH A SINGLE HASH UNIT
August 22, 2024 – CRYPTO 2024, UCSB

Markku-Juhani O. Saarinen
markku-juhani.saarinen@tuni.fi
NISEC and SoC Hub Research Center, Tampere University

default

FIPS 205, SLH-DSA (Stateless Hash-Based Digital Signature Standard)

SLH-DSA is the NIST-standardized version of the
SPHINCS+ scheme by Andreas Hülsing and others.

Stateless hash-based signature scheme:
No need to keep track of signing state / index.
Each secret key can be used for 264 signatures.

Relatively complex, multi-stage algorithm.
Forest of Random Subsets (FORS), Winternitz
One-Time Signature Scheme (WOTS+), eXtended
Merkle Signature Scheme (XMSS) hypertree.

FIPS 205 came into effect on August 13, 2024.
Only change in final: Domain-separatingM → M ′

padding for different input hashing methods.

H H H H

H H

H

WPK0 WPK1 WPK2 WPK3 WPK4 WPK5 WPK6 WPK7

wots_sign()

PKROOT

md[1]md[0] md[2] md[k-1]

Tk(PK.seed, ADRSidx, roots)

PKFORS

 select with
md[i]

k auth paths
.. SIGFORS || ..

d layers of
hypertree

fors_pkFromSig()

digest ← Hmsg(R, PK.seed, PK.root, M)

Randomizer
R

Message
M

Public Key
PK

FORS
0

FORS
1

FORS
2

FORS
...

 select with
idxtree

md

signature:
SIG = R || ..

idxleaf, idxtree

 verification leads
to the public key

~ select 64-bits

d trees,
each

height h'

k trees,
each

height a

WOTS: Winternitz
chains of length w

d auth paths
.. || SIGHT.

len chains
.. || SIGHT.

2 / 19

default

FIPS 205, SLH-DSA (Stateless Hash-Based Digital Signature Standard)

SLH-DSA is the NIST-standardized version of the
SPHINCS+ scheme by Andreas Hülsing and others.

Stateless hash-based signature scheme:
No need to keep track of signing state / index.
Each secret key can be used for 264 signatures.

Relatively complex, multi-stage algorithm.
Forest of Random Subsets (FORS), Winternitz
One-Time Signature Scheme (WOTS+), eXtended
Merkle Signature Scheme (XMSS) hypertree.

FIPS 205 came into effect on August 13, 2024.
Only change in final: Domain-separatingM → M ′

padding for different input hashing methods.

H H H H

H H

H

WPK0 WPK1 WPK2 WPK3 WPK4 WPK5 WPK6 WPK7

wots_sign()

PKROOT

md[1]md[0] md[2] md[k-1]

Tk(PK.seed, ADRSidx, roots)

PKFORS

 select with
md[i]

k auth paths
.. SIGFORS || ..

d layers of
hypertree

fors_pkFromSig()

digest ← Hmsg(R, PK.seed, PK.root, M)

Randomizer
R

Message
M

Public Key
PK

FORS
0

FORS
1

FORS
2

FORS
...

 select with
idxtree

md

signature:
SIG = R || ..

idxleaf, idxtree

 verification leads
to the public key

~ select 64-bits

d trees,
each

height h'

k trees,
each

height a

WOTS: Winternitz
chains of length w

d auth paths
.. || SIGHT.

len chains
.. || SIGHT.

2 / 19

default

FIPS 205, SLH-DSA (Stateless Hash-Based Digital Signature Standard)

SLH-DSA is the NIST-standardized version of the
SPHINCS+ scheme by Andreas Hülsing and others.

Stateless hash-based signature scheme:
No need to keep track of signing state / index.
Each secret key can be used for 264 signatures.

Relatively complex, multi-stage algorithm.
Forest of Random Subsets (FORS), Winternitz
One-Time Signature Scheme (WOTS+), eXtended
Merkle Signature Scheme (XMSS) hypertree.

FIPS 205 came into effect on August 13, 2024.
Only change in final: Domain-separatingM → M ′

padding for different input hashing methods.

H H H H

H H

H

WPK0 WPK1 WPK2 WPK3 WPK4 WPK5 WPK6 WPK7

wots_sign()

PKROOT

md[1]md[0] md[2] md[k-1]

Tk(PK.seed, ADRSidx, roots)

PKFORS

 select with
md[i]

k auth paths
.. SIGFORS || ..

d layers of
hypertree

fors_pkFromSig()

digest ← Hmsg(R, PK.seed, PK.root, M)

Randomizer
R

Message
M

Public Key
PK

FORS
0

FORS
1

FORS
2

FORS
...

 select with
idxtree

md

signature:
SIG = R || ..

idxleaf, idxtree

 verification leads
to the public key

~ select 64-bits

d trees,
each

height h'

k trees,
each

height a

WOTS: Winternitz
chains of length w

d auth paths
.. || SIGHT.

len chains
.. || SIGHT.

2 / 19

default

FIPS 205, SLH-DSA (Stateless Hash-Based Digital Signature Standard)

SLH-DSA is the NIST-standardized version of the
SPHINCS+ scheme by Andreas Hülsing and others.

Stateless hash-based signature scheme:
No need to keep track of signing state / index.
Each secret key can be used for 264 signatures.

Relatively complex, multi-stage algorithm.
Forest of Random Subsets (FORS), Winternitz
One-Time Signature Scheme (WOTS+), eXtended
Merkle Signature Scheme (XMSS) hypertree.

FIPS 205 came into effect on August 13, 2024.
Only change in final: Domain-separatingM → M ′

padding for different input hashing methods.

H H H H

H H

H

WPK0 WPK1 WPK2 WPK3 WPK4 WPK5 WPK6 WPK7

wots_sign()

PKROOT

md[1]md[0] md[2] md[k-1]

Tk(PK.seed, ADRSidx, roots)

PKFORS

 select with
md[i]

k auth paths
.. SIGFORS || ..

d layers of
hypertree

fors_pkFromSig()

digest ← Hmsg(R, PK.seed, PK.root, M)

Randomizer
R

Message
M

Public Key
PK

FORS
0

FORS
1

FORS
2

FORS
...

 select with
idxtree

md

signature:
SIG = R || ..

idxleaf, idxtree

 verification leads
to the public key

~ select 64-bits

d trees,
each

height h'

k trees,
each

height a

WOTS: Winternitz
chains of length w

d auth paths
.. || SIGHT.

len chains
.. || SIGHT.

2 / 19

default

SLotH: SLH-DSA Architecture for SoC Root-of-Trust (RoT) Units

Typical Use Case:

Network Controller
AES-GCM

(Streaming TLS)

Storage Controller
AES-XTS

(Full-Disk Encrypt)

Root of Trust
SHA2/3, SLH-DSA
(Boot, Key Mgmt)

Main CPU Cores
AES, SHA2, SHA3,

ECDH, ECDSA,
ML-DSA, ML-KEM

(Handshake, Auth.,
Apps' Encryption)

Memory Controller
AES-XTS

(Memory Encrypt)

Eth
Radio
PHY

Disks:
SSD
Flash

DRAM
c2c

RoT Sec.Boundary

SoC Physical Boundary

SLH-DSA can be used by RoTs for boot
signatures, updates, and attestation.

SLotH Features:
▶ Keccak (SHAKE) and SHA2 (256/512):

Supports all parameter sets of
SLH-DSA in FIPS 205 (“internal”
functions in the final version.)

▶ Not much larger than existing
Root-of-Trust hash accelerators.

▶ But often 10 times faster due to
SLH-DSA specific optimizations.

▶ Side-channel countermeasures.
▶ (Passes TVLA leakage assessment.)

(Full software and hardware source code: https://github.com/slh-dsa/sloth)

3 / 19

https://github.com/slh-dsa/sloth

default

SLotH: SLH-DSA Architecture for SoC Root-of-Trust (RoT) Units

Typical Use Case:

Network Controller
AES-GCM

(Streaming TLS)

Storage Controller
AES-XTS

(Full-Disk Encrypt)

Root of Trust
SHA2/3, SLH-DSA
(Boot, Key Mgmt)

Main CPU Cores
AES, SHA2, SHA3,

ECDH, ECDSA,
ML-DSA, ML-KEM

(Handshake, Auth.,
Apps' Encryption)

Memory Controller
AES-XTS

(Memory Encrypt)

Eth
Radio
PHY

Disks:
SSD
Flash

DRAM
c2c

RoT Sec.Boundary

SoC Physical Boundary

SLH-DSA can be used by RoTs for boot
signatures, updates, and attestation.

SLotH Features:
▶ Keccak (SHAKE) and SHA2 (256/512):

Supports all parameter sets of
SLH-DSA in FIPS 205 (“internal”
functions in the final version.)

▶ Not much larger than existing
Root-of-Trust hash accelerators.

▶ But often 10 times faster due to
SLH-DSA specific optimizations.

▶ Side-channel countermeasures.
▶ (Passes TVLA leakage assessment.)

(Full software and hardware source code: https://github.com/slh-dsa/sloth)

3 / 19

https://github.com/slh-dsa/sloth

default

SLotH: SLH-DSA Architecture for SoC Root-of-Trust (RoT) Units

Typical Use Case:

Network Controller
AES-GCM

(Streaming TLS)

Storage Controller
AES-XTS

(Full-Disk Encrypt)

Root of Trust
SHA2/3, SLH-DSA
(Boot, Key Mgmt)

Main CPU Cores
AES, SHA2, SHA3,

ECDH, ECDSA,
ML-DSA, ML-KEM

(Handshake, Auth.,
Apps' Encryption)

Memory Controller
AES-XTS

(Memory Encrypt)

Eth
Radio
PHY

Disks:
SSD
Flash

DRAM
c2c

RoT Sec.Boundary

SoC Physical Boundary

SLH-DSA can be used by RoTs for boot
signatures, updates, and attestation.

SLotH Features:
▶ Keccak (SHAKE) and SHA2 (256/512):

Supports all parameter sets of
SLH-DSA in FIPS 205 (“internal”
functions in the final version.)

▶ Not much larger than existing
Root-of-Trust hash accelerators.

▶ But often 10 times faster due to
SLH-DSA specific optimizations.

▶ Side-channel countermeasures.
▶ (Passes TVLA leakage assessment.)

(Full software and hardware source code: https://github.com/slh-dsa/sloth)

3 / 19

https://github.com/slh-dsa/sloth

default

SLotH: SLH-DSA Architecture for SoC Root-of-Trust (RoT) Units

Typical Use Case:

Network Controller
AES-GCM

(Streaming TLS)

Storage Controller
AES-XTS

(Full-Disk Encrypt)

Root of Trust
SHA2/3, SLH-DSA
(Boot, Key Mgmt)

Main CPU Cores
AES, SHA2, SHA3,

ECDH, ECDSA,
ML-DSA, ML-KEM

(Handshake, Auth.,
Apps' Encryption)

Memory Controller
AES-XTS

(Memory Encrypt)

Eth
Radio
PHY

Disks:
SSD
Flash

DRAM
c2c

RoT Sec.Boundary

SoC Physical Boundary

SLH-DSA can be used by RoTs for boot
signatures, updates, and attestation.

SLotH Features:
▶ Keccak (SHAKE) and SHA2 (256/512):

Supports all parameter sets of
SLH-DSA in FIPS 205 (“internal”
functions in the final version.)

▶ Not much larger than existing
Root-of-Trust hash accelerators.

▶ But often 10 times faster due to
SLH-DSA specific optimizations.

▶ Side-channel countermeasures.
▶ (Passes TVLA leakage assessment.)

(Full software and hardware source code: https://github.com/slh-dsa/sloth)

3 / 19

https://github.com/slh-dsa/sloth

default

SLotH: SLH-DSA Architecture for SoC Root-of-Trust (RoT) Units

Typical Use Case:

Network Controller
AES-GCM

(Streaming TLS)

Storage Controller
AES-XTS

(Full-Disk Encrypt)

Root of Trust
SHA2/3, SLH-DSA
(Boot, Key Mgmt)

Main CPU Cores
AES, SHA2, SHA3,

ECDH, ECDSA,
ML-DSA, ML-KEM

(Handshake, Auth.,
Apps' Encryption)

Memory Controller
AES-XTS

(Memory Encrypt)

Eth
Radio
PHY

Disks:
SSD
Flash

DRAM
c2c

RoT Sec.Boundary

SoC Physical Boundary

SLH-DSA can be used by RoTs for boot
signatures, updates, and attestation.

SLotH Features:
▶ Keccak (SHAKE) and SHA2 (256/512):

Supports all parameter sets of
SLH-DSA in FIPS 205 (“internal”
functions in the final version.)

▶ Not much larger than existing
Root-of-Trust hash accelerators.

▶ But often 10 times faster due to
SLH-DSA specific optimizations.

▶ Side-channel countermeasures.
▶ (Passes TVLA leakage assessment.)

(Full software and hardware source code: https://github.com/slh-dsa/sloth)

3 / 19

https://github.com/slh-dsa/sloth

default

SLotH: SLH-DSA Architecture for SoC Root-of-Trust (RoT) Units

Typical Use Case:

Network Controller
AES-GCM

(Streaming TLS)

Storage Controller
AES-XTS

(Full-Disk Encrypt)

Root of Trust
SHA2/3, SLH-DSA
(Boot, Key Mgmt)

Main CPU Cores
AES, SHA2, SHA3,

ECDH, ECDSA,
ML-DSA, ML-KEM

(Handshake, Auth.,
Apps' Encryption)

Memory Controller
AES-XTS

(Memory Encrypt)

Eth
Radio
PHY

Disks:
SSD
Flash

DRAM
c2c

RoT Sec.Boundary

SoC Physical Boundary

SLH-DSA can be used by RoTs for boot
signatures, updates, and attestation.

SLotH Features:
▶ Keccak (SHAKE) and SHA2 (256/512):

Supports all parameter sets of
SLH-DSA in FIPS 205 (“internal”
functions in the final version.)

▶ Not much larger than existing
Root-of-Trust hash accelerators.

▶ But often 10 times faster due to
SLH-DSA specific optimizations.

▶ Side-channel countermeasures.
▶ (Passes TVLA leakage assessment.)

(Full software and hardware source code: https://github.com/slh-dsa/sloth)

3 / 19

https://github.com/slh-dsa/sloth

default

SLotH: SLH-DSA Architecture for SoC Root-of-Trust (RoT) Units

Typical Use Case:

Network Controller
AES-GCM

(Streaming TLS)

Storage Controller
AES-XTS

(Full-Disk Encrypt)

Root of Trust
SHA2/3, SLH-DSA
(Boot, Key Mgmt)

Main CPU Cores
AES, SHA2, SHA3,

ECDH, ECDSA,
ML-DSA, ML-KEM

(Handshake, Auth.,
Apps' Encryption)

Memory Controller
AES-XTS

(Memory Encrypt)

Eth
Radio
PHY

Disks:
SSD
Flash

DRAM
c2c

RoT Sec.Boundary

SoC Physical Boundary

SLH-DSA can be used by RoTs for boot
signatures, updates, and attestation.

SLotH Features:
▶ Keccak (SHAKE) and SHA2 (256/512):

Supports all parameter sets of
SLH-DSA in FIPS 205 (“internal”
functions in the final version.)

▶ Not much larger than existing
Root-of-Trust hash accelerators.

▶ But often 10 times faster due to
SLH-DSA specific optimizations.

▶ Side-channel countermeasures.
▶ (Passes TVLA leakage assessment.)

(Full software and hardware source code: https://github.com/slh-dsa/sloth)

3 / 19

https://github.com/slh-dsa/sloth

default

10 × Faster than big CPUs, over 100 × Faster than Embedded SW
Example: SLH-DSA-SHAKE-128f (SPHINCS+-SHAKE-128f-simple) cycle counts.

Implementation KeyGen Sign Verify
pqm4: Embedded SW [1] 59,759,081 1,483,676,214 83,065,165
avx2: Main CPU SW [2] 2,249,444 56,933,788 3,346,068
shake256_lsu HW [3] 1,724,534 42,597,665 2,457,742
SLotH [this work] 176,552 4,903,978 440,636
Gain over embed SW [1] 338.5× 302.5× 188.5×
Gain over AVX2 SW [2] 12.7× 11.6× 7.6×
Gain over LSU HW [3] 9.8× 8.7× 5.6×

[1] M. J. Kannwischer, R. Petri, J. Rijneveld, P. Schwabe, K. Stoffelen: “PQM4: Post-quantum crypto
library for the ARM Cortex-M4.”, 2024. https://github.com/mupq/pqm4

[2] SPHINCS+ Team: “SPHINCS+ Submission to the NIST post-quantum project, v.3.1.” June 2022.
https://sphincs.org/data/sphincs+-r3.1-specification.pdf

[3] P. Karl, J. Schupp, G. Sigl: “The Impact of Hash Primitives and Communication Overhead for
Hardware-Accelerated SPHINCS+,” COSADE 2024 (April 9–10), 2024. https://ia.cr/2023/1767

4 / 19

https://github.com/mupq/pqm4
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://ia.cr/2023/1767

default

10 × Faster than big CPUs, over 100 × Faster than Embedded SW
Example: SLH-DSA-SHAKE-128f (SPHINCS+-SHAKE-128f-simple) cycle counts.

Implementation KeyGen Sign Verify
pqm4: Embedded SW [1] 59,759,081 1,483,676,214 83,065,165
avx2: Main CPU SW [2] 2,249,444 56,933,788 3,346,068
shake256_lsu HW [3] 1,724,534 42,597,665 2,457,742
SLotH [this work] 176,552 4,903,978 440,636
Gain over embed SW [1] 338.5× 302.5× 188.5×
Gain over AVX2 SW [2] 12.7× 11.6× 7.6×
Gain over LSU HW [3] 9.8× 8.7× 5.6×

[1] M. J. Kannwischer, R. Petri, J. Rijneveld, P. Schwabe, K. Stoffelen: “PQM4: Post-quantum crypto
library for the ARM Cortex-M4.”, 2024. https://github.com/mupq/pqm4

[2] SPHINCS+ Team: “SPHINCS+ Submission to the NIST post-quantum project, v.3.1.” June 2022.
https://sphincs.org/data/sphincs+-r3.1-specification.pdf

[3] P. Karl, J. Schupp, G. Sigl: “The Impact of Hash Primitives and Communication Overhead for
Hardware-Accelerated SPHINCS+,” COSADE 2024 (April 9–10), 2024. https://ia.cr/2023/1767

4 / 19

https://github.com/mupq/pqm4
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://ia.cr/2023/1767

default

10 × Faster than big CPUs, over 100 × Faster than Embedded SW
Example: SLH-DSA-SHAKE-128f (SPHINCS+-SHAKE-128f-simple) cycle counts.

Implementation KeyGen Sign Verify
pqm4: Embedded SW [1] 59,759,081 1,483,676,214 83,065,165
avx2: Main CPU SW [2] 2,249,444 56,933,788 3,346,068
shake256_lsu HW [3] 1,724,534 42,597,665 2,457,742
SLotH [this work] 176,552 4,903,978 440,636
Gain over embed SW [1] 338.5× 302.5× 188.5×
Gain over AVX2 SW [2] 12.7× 11.6× 7.6×
Gain over LSU HW [3] 9.8× 8.7× 5.6×

[1] M. J. Kannwischer, R. Petri, J. Rijneveld, P. Schwabe, K. Stoffelen: “PQM4: Post-quantum crypto
library for the ARM Cortex-M4.”, 2024. https://github.com/mupq/pqm4

[2] SPHINCS+ Team: “SPHINCS+ Submission to the NIST post-quantum project, v.3.1.” June 2022.
https://sphincs.org/data/sphincs+-r3.1-specification.pdf

[3] P. Karl, J. Schupp, G. Sigl: “The Impact of Hash Primitives and Communication Overhead for
Hardware-Accelerated SPHINCS+,” COSADE 2024 (April 9–10), 2024. https://ia.cr/2023/1767

4 / 19

https://github.com/mupq/pqm4
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://ia.cr/2023/1767

default

10 × Faster than big CPUs, over 100 × Faster than Embedded SW
Example: SLH-DSA-SHAKE-128f (SPHINCS+-SHAKE-128f-simple) cycle counts.

Implementation KeyGen Sign Verify
pqm4: Embedded SW [1] 59,759,081 1,483,676,214 83,065,165
avx2: Main CPU SW [2] 2,249,444 56,933,788 3,346,068
shake256_lsu HW [3] 1,724,534 42,597,665 2,457,742
SLotH [this work] 176,552 4,903,978 440,636
Gain over embed SW [1] 338.5× 302.5× 188.5×
Gain over AVX2 SW [2] 12.7× 11.6× 7.6×
Gain over LSU HW [3] 9.8× 8.7× 5.6×

[1] M. J. Kannwischer, R. Petri, J. Rijneveld, P. Schwabe, K. Stoffelen: “PQM4: Post-quantum crypto
library for the ARM Cortex-M4.”, 2024. https://github.com/mupq/pqm4

[2] SPHINCS+ Team: “SPHINCS+ Submission to the NIST post-quantum project, v.3.1.” June 2022.
https://sphincs.org/data/sphincs+-r3.1-specification.pdf

[3] P. Karl, J. Schupp, G. Sigl: “The Impact of Hash Primitives and Communication Overhead for
Hardware-Accelerated SPHINCS+,” COSADE 2024 (April 9–10), 2024. https://ia.cr/2023/1767

4 / 19

https://github.com/mupq/pqm4
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://ia.cr/2023/1767

default

10 × Faster than big CPUs, over 100 × Faster than Embedded SW
Example: SLH-DSA-SHAKE-128f (SPHINCS+-SHAKE-128f-simple) cycle counts.

Implementation KeyGen Sign Verify
pqm4: Embedded SW [1] 59,759,081 1,483,676,214 83,065,165
avx2: Main CPU SW [2] 2,249,444 56,933,788 3,346,068
shake256_lsu HW [3] 1,724,534 42,597,665 2,457,742
SLotH [this work] 176,552 4,903,978 440,636
Gain over embed SW [1] 338.5× 302.5× 188.5×
Gain over AVX2 SW [2] 12.7× 11.6× 7.6×
Gain over LSU HW [3] 9.8× 8.7× 5.6×

[1] M. J. Kannwischer, R. Petri, J. Rijneveld, P. Schwabe, K. Stoffelen: “PQM4: Post-quantum crypto
library for the ARM Cortex-M4.”, 2024. https://github.com/mupq/pqm4

[2] SPHINCS+ Team: “SPHINCS+ Submission to the NIST post-quantum project, v.3.1.” June 2022.
https://sphincs.org/data/sphincs+-r3.1-specification.pdf

[3] P. Karl, J. Schupp, G. Sigl: “The Impact of Hash Primitives and Communication Overhead for
Hardware-Accelerated SPHINCS+,” COSADE 2024 (April 9–10), 2024. https://ia.cr/2023/1767

4 / 19

https://github.com/mupq/pqm4
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://ia.cr/2023/1767

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

.. Why/How?
Why is current software and hardware so much worse?
▶ Hashes are very fast in hardware, and very slow on CPUs:

SHA3/SHAKE (Keccak f1600) is 24 cycles in HW, 2,000 (..10,000+) cycles on CPUs.
SHA2 (256/512 compr. func) is 64/80 cycles in HW, 1,000+ cycles on CPUs.

▶ Hash accelerators are designed to hash data, not to hash other hashes.
▶ A lot of cycles are wasted with CPU setting up new data to be hashed.

How did we make it faster: (Perform quantitative analysis, remove bottlenecks.)
▶ Automate hash primitive formats in hardware, minimizing CPU involvement:

Hold keys (PK.seed and SK.seed) and ADRS fields in hardware registers.
▶ Automate Winternitz iteration – most of SLH-DSA is performing iteration (2):

X 0 = PRF(PK.seed, SK.seed,ADRS = WOTS_PRF) (1)
X j = F(PK.seed,ADRS = WOTS_HASH(j),X j−1) for j ≥ 1. (2)

5 / 19

default

SLH-DSA Hash Primitives: Public and Secret Variables (1/2)

Hmsg(R,PK = (PK.seed ∥ PK.root),M) (PQ-ITSR) Used in:
= SHAKE256(R ∥ PK ∥M, 8m) SHAKE, all
= MGF1-SHA-256(R ∥ PK.seed ∥ SHA-256(R ∥ PK ∥M),m) SHA2, n = 16
= MGF1-SHA-512(R ∥ PK.seed ∥ SHA-512(R ∥ PK ∥M),m) SHA2, n ≥ 24

PRF(PK.seed, SK.seed,ADRS) (PQ-PRF) Used in:
= SHAKE256(PK.seed ∥ ADRS ∥ SK.seed, 8n) SHAKE, all
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64 − n) ∥ ADRSc ∥ SK.seed)) SHA2, all

PRFmsg(SK.prf, opt_rand ,M) (PQ-PRF) Used in:
= SHAKE256(SK.prf ∥ opt_rand ∥M, 8n) SHAKE, all
= Truncn(HMAC-SHA-256(SK.prf, opt_rand ∥M)) SHA2, n = 16
= Truncn(HMAC-SHA-512(SK.prf, opt_rand ∥M)) SHA2, n ≥ 24

6 / 19

default

SLH-DSA Hash Primitives: Public and Secret Variables (2/2)

F(PK.seed,ADRS,M1) (PQ-DM-SPR) Used in:
= SHAKE256(PK.seed ∥ ADRS ∥M1, 8n) SHAKE, all
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64 − n) ∥ ADRSc ∥M1)) SHA2, all

H(PK.seed,ADRS,M2) (PQ-DM-SPR) Used in:
= SHAKE256(PK.seed ∥ ADRS ∥M2, 8n) SHAKE, all
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64 − n) ∥ ADRSc ∥M2)) SHA2, n = 16
= Truncn(SHA-512(PK.seed ∥ toByte(0, 128 − n) ∥ ADRSc ∥M2)) SHA2, n ≥ 24

Tℓ(PK.seed,ADRS,Mℓ) (PQ-DM-SPR) Used in:
= SHAKE256(PK.seed ∥ ADRS ∥Mℓ, 8n) SHAKE, all
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64 − n) ∥ ADRSc ∥Mℓ)) SHA2, n = 16
= Truncn(SHA-512(PK.seed ∥ toByte(0, 128 − n) ∥ ADRSc ∥Mℓ)) SHA2, n ≥ 24

7 / 19

default

Hash Primitive Counts: slh_sign(), Signature Generation

Distribution of hash primitive calls in SLH-DSA-SHA2-* and SLH-DSA-SHAKE-* signining.

Function 128f 192f 256f 128s 192s 256s
PRF 8,272 17,424 36,144 182,784 461,312 497,664

F 94,246 142,697 290,775 1,938,676 3,019,898 2,418,182
H 2,230 8,566 18,136 60,898 282,079 362,458

Tℓ 176 176 272 3,584 3,584 2,048
Total 104,926 168,865 345,329 2,185,944 3,766,875 3,280,354

chain() 6,895 10,047 19,296 125,650 183,090 137,685
chain F 92,134 134,249 272,855 1,881,332 2,741,370 2,057,734
chain % 87.8% 79.5% 79.0% 86.1% 72.8% 62.7%

▶ A large majority of signing work is in F calls in chain() – Winternitz iteration.
▶ Perhaps 10% of calls are PRF calls that use the secret key SK.seed.
▶ (This table excludes Hmsg and PRFmsg as those are called only 1 or 2 times.)

8 / 19

default

Hash Primitive Counts: slh_sign(), Signature Generation

Distribution of hash primitive calls in SLH-DSA-SHA2-* and SLH-DSA-SHAKE-* signining.

Function 128f 192f 256f 128s 192s 256s
PRF 8,272 17,424 36,144 182,784 461,312 497,664

F 94,246 142,697 290,775 1,938,676 3,019,898 2,418,182
H 2,230 8,566 18,136 60,898 282,079 362,458

Tℓ 176 176 272 3,584 3,584 2,048
Total 104,926 168,865 345,329 2,185,944 3,766,875 3,280,354

chain() 6,895 10,047 19,296 125,650 183,090 137,685
chain F 92,134 134,249 272,855 1,881,332 2,741,370 2,057,734
chain % 87.8% 79.5% 79.0% 86.1% 72.8% 62.7%

▶ A large majority of signing work is in F calls in chain() – Winternitz iteration.
▶ Perhaps 10% of calls are PRF calls that use the secret key SK.seed.
▶ (This table excludes Hmsg and PRFmsg as those are called only 1 or 2 times.)

8 / 19

default

Hash Primitive Counts: slh_sign(), Signature Generation

Distribution of hash primitive calls in SLH-DSA-SHA2-* and SLH-DSA-SHAKE-* signining.

Function 128f 192f 256f 128s 192s 256s
PRF 8,272 17,424 36,144 182,784 461,312 497,664

F 94,246 142,697 290,775 1,938,676 3,019,898 2,418,182
H 2,230 8,566 18,136 60,898 282,079 362,458

Tℓ 176 176 272 3,584 3,584 2,048
Total 104,926 168,865 345,329 2,185,944 3,766,875 3,280,354

chain() 6,895 10,047 19,296 125,650 183,090 137,685
chain F 92,134 134,249 272,855 1,881,332 2,741,370 2,057,734
chain % 87.8% 79.5% 79.0% 86.1% 72.8% 62.7%

▶ A large majority of signing work is in F calls in chain() – Winternitz iteration.
▶ Perhaps 10% of calls are PRF calls that use the secret key SK.seed.
▶ (This table excludes Hmsg and PRFmsg as those are called only 1 or 2 times.)

8 / 19

default

Hash Primitive Counts: slh_sign(), Signature Generation

Distribution of hash primitive calls in SLH-DSA-SHA2-* and SLH-DSA-SHAKE-* signining.

Function 128f 192f 256f 128s 192s 256s
PRF 8,272 17,424 36,144 182,784 461,312 497,664

F 94,246 142,697 290,775 1,938,676 3,019,898 2,418,182
H 2,230 8,566 18,136 60,898 282,079 362,458

Tℓ 176 176 272 3,584 3,584 2,048
Total 104,926 168,865 345,329 2,185,944 3,766,875 3,280,354

chain() 6,895 10,047 19,296 125,650 183,090 137,685
chain F 92,134 134,249 272,855 1,881,332 2,741,370 2,057,734
chain % 87.8% 79.5% 79.0% 86.1% 72.8% 62.7%

▶ A large majority of signing work is in F calls in chain() – Winternitz iteration.
▶ Perhaps 10% of calls are PRF calls that use the secret key SK.seed.
▶ (This table excludes Hmsg and PRFmsg as those are called only 1 or 2 times.)

8 / 19

default

Hash Primitive Counts: slh_verify(), Signature Verification

Distribution of hash primitive calls in SLH-DSA-SHA2-* and SLH-DSA-SHAKE-* verification.

Function 128f 192f 256f 128s 192s 256s
PRF 0 0 0 0 0 0

F 5,908 8,620 8,633 1,886 2,751 4,067
H 264 330 383 231 301 372

Tℓ 23 23 18 8 8 9
Total 6,196 8,974 9,035 2,126 3,061 4,449

chain() 770 1,122 1,139 245 357 536
chain F 5,875 8,587 8,598 1,872 2,734 4,045
chain % 94.8% 95.7% 95.2% 88.1% 89.3% 90.9%

▶ More than 90% of verification work is in F calls in chain() – Winternitz iteration.
▶ The “small” parameter sets (s) require fewer hashes than the “fast” parameter

sets (f). For verification, s parameter signatures are actually much faster.

9 / 19

default

Hash Primitive Counts: slh_verify(), Signature Verification

Distribution of hash primitive calls in SLH-DSA-SHA2-* and SLH-DSA-SHAKE-* verification.

Function 128f 192f 256f 128s 192s 256s
PRF 0 0 0 0 0 0

F 5,908 8,620 8,633 1,886 2,751 4,067
H 264 330 383 231 301 372

Tℓ 23 23 18 8 8 9
Total 6,196 8,974 9,035 2,126 3,061 4,449

chain() 770 1,122 1,139 245 357 536
chain F 5,875 8,587 8,598 1,872 2,734 4,045
chain % 94.8% 95.7% 95.2% 88.1% 89.3% 90.9%

▶ More than 90% of verification work is in F calls in chain() – Winternitz iteration.
▶ The “small” parameter sets (s) require fewer hashes than the “fast” parameter

sets (f). For verification, s parameter signatures are actually much faster.

9 / 19

default

Hash Primitive Counts: slh_verify(), Signature Verification

Distribution of hash primitive calls in SLH-DSA-SHA2-* and SLH-DSA-SHAKE-* verification.

Function 128f 192f 256f 128s 192s 256s
PRF 0 0 0 0 0 0

F 5,908 8,620 8,633 1,886 2,751 4,067
H 264 330 383 231 301 372

Tℓ 23 23 18 8 8 9
Total 6,196 8,974 9,035 2,126 3,061 4,449

chain() 770 1,122 1,139 245 357 536
chain F 5,875 8,587 8,598 1,872 2,734 4,045
chain % 94.8% 95.7% 95.2% 88.1% 89.3% 90.9%

▶ More than 90% of verification work is in F calls in chain() – Winternitz iteration.
▶ The “small” parameter sets (s) require fewer hashes than the “fast” parameter

sets (f). For verification, s parameter signatures are actually much faster.

9 / 19

default

On SLotH Hardware and Firmware

Full hardware and software for the prototype:
https://github.com/slh-dsa/sloth

Some Features and Notes:
▶ About 6,700 lines of bare metal ANSI C and 4,100 lines of Verilog.
▶ I wrote it mostly from scratch after the publication of FIPS 205 ipd.
▶ Actually Free: BSD 3-Clause License, no patent applications, etc.
▶ Shared implementation for all 12 parameters; 16.4kB binary “ROM” for all.
▶ Works with 64kB RAM (4kB stack – recall that signatures are up to 50kB).
▶ Clean split between the “algorithm core” and “hardware driver” components.

Software part “slh” also runs without special hardware (on any PC).
▶ (NIST CAVP was updated this week – targeting compliance with the final standard.)

10 / 19

https://github.com/slh-dsa/sloth

default

On SLotH Hardware and Firmware

Full hardware and software for the prototype:
https://github.com/slh-dsa/sloth

Some Features and Notes:
▶ About 6,700 lines of bare metal ANSI C and 4,100 lines of Verilog.
▶ I wrote it mostly from scratch after the publication of FIPS 205 ipd.
▶ Actually Free: BSD 3-Clause License, no patent applications, etc.
▶ Shared implementation for all 12 parameters; 16.4kB binary “ROM” for all.
▶ Works with 64kB RAM (4kB stack – recall that signatures are up to 50kB).
▶ Clean split between the “algorithm core” and “hardware driver” components.

Software part “slh” also runs without special hardware (on any PC).
▶ (NIST CAVP was updated this week – targeting compliance with the final standard.)

10 / 19

https://github.com/slh-dsa/sloth

default

On SLotH Hardware and Firmware

Full hardware and software for the prototype:
https://github.com/slh-dsa/sloth

Some Features and Notes:
▶ About 6,700 lines of bare metal ANSI C and 4,100 lines of Verilog.
▶ I wrote it mostly from scratch after the publication of FIPS 205 ipd.
▶ Actually Free: BSD 3-Clause License, no patent applications, etc.
▶ Shared implementation for all 12 parameters; 16.4kB binary “ROM” for all.
▶ Works with 64kB RAM (4kB stack – recall that signatures are up to 50kB).
▶ Clean split between the “algorithm core” and “hardware driver” components.

Software part “slh” also runs without special hardware (on any PC).
▶ (NIST CAVP was updated this week – targeting compliance with the final standard.)

10 / 19

https://github.com/slh-dsa/sloth

default

On SLotH Hardware and Firmware

Full hardware and software for the prototype:
https://github.com/slh-dsa/sloth

Some Features and Notes:
▶ About 6,700 lines of bare metal ANSI C and 4,100 lines of Verilog.
▶ I wrote it mostly from scratch after the publication of FIPS 205 ipd.
▶ Actually Free: BSD 3-Clause License, no patent applications, etc.
▶ Shared implementation for all 12 parameters; 16.4kB binary “ROM” for all.
▶ Works with 64kB RAM (4kB stack – recall that signatures are up to 50kB).
▶ Clean split between the “algorithm core” and “hardware driver” components.

Software part “slh” also runs without special hardware (on any PC).
▶ (NIST CAVP was updated this week – targeting compliance with the final standard.)

10 / 19

https://github.com/slh-dsa/sloth

default

On SLotH Hardware and Firmware

Full hardware and software for the prototype:
https://github.com/slh-dsa/sloth

Some Features and Notes:
▶ About 6,700 lines of bare metal ANSI C and 4,100 lines of Verilog.
▶ I wrote it mostly from scratch after the publication of FIPS 205 ipd.
▶ Actually Free: BSD 3-Clause License, no patent applications, etc.
▶ Shared implementation for all 12 parameters; 16.4kB binary “ROM” for all.
▶ Works with 64kB RAM (4kB stack – recall that signatures are up to 50kB).
▶ Clean split between the “algorithm core” and “hardware driver” components.

Software part “slh” also runs without special hardware (on any PC).
▶ (NIST CAVP was updated this week – targeting compliance with the final standard.)

10 / 19

https://github.com/slh-dsa/sloth

default

On SLotH Hardware and Firmware

Full hardware and software for the prototype:
https://github.com/slh-dsa/sloth

Some Features and Notes:
▶ About 6,700 lines of bare metal ANSI C and 4,100 lines of Verilog.
▶ I wrote it mostly from scratch after the publication of FIPS 205 ipd.
▶ Actually Free: BSD 3-Clause License, no patent applications, etc.
▶ Shared implementation for all 12 parameters; 16.4kB binary “ROM” for all.
▶ Works with 64kB RAM (4kB stack – recall that signatures are up to 50kB).
▶ Clean split between the “algorithm core” and “hardware driver” components.

Software part “slh” also runs without special hardware (on any PC).
▶ (NIST CAVP was updated this week – targeting compliance with the final standard.)

10 / 19

https://github.com/slh-dsa/sloth

default

On SLotH Hardware and Firmware

Full hardware and software for the prototype:
https://github.com/slh-dsa/sloth

Some Features and Notes:
▶ About 6,700 lines of bare metal ANSI C and 4,100 lines of Verilog.
▶ I wrote it mostly from scratch after the publication of FIPS 205 ipd.
▶ Actually Free: BSD 3-Clause License, no patent applications, etc.
▶ Shared implementation for all 12 parameters; 16.4kB binary “ROM” for all.
▶ Works with 64kB RAM (4kB stack – recall that signatures are up to 50kB).
▶ Clean split between the “algorithm core” and “hardware driver” components.

Software part “slh” also runs without special hardware (on any PC).
▶ (NIST CAVP was updated this week – targeting compliance with the final standard.)

10 / 19

https://github.com/slh-dsa/sloth

default

On SLotH Hardware and Firmware

Full hardware and software for the prototype:
https://github.com/slh-dsa/sloth

Some Features and Notes:
▶ About 6,700 lines of bare metal ANSI C and 4,100 lines of Verilog.
▶ I wrote it mostly from scratch after the publication of FIPS 205 ipd.
▶ Actually Free: BSD 3-Clause License, no patent applications, etc.
▶ Shared implementation for all 12 parameters; 16.4kB binary “ROM” for all.
▶ Works with 64kB RAM (4kB stack – recall that signatures are up to 50kB).
▶ Clean split between the “algorithm core” and “hardware driver” components.

Software part “slh” also runs without special hardware (on any PC).
▶ (NIST CAVP was updated this week – targeting compliance with the final standard.)

10 / 19

https://github.com/slh-dsa/sloth

default

On SLotH Hardware and Firmware

Full hardware and software for the prototype:
https://github.com/slh-dsa/sloth

Some Features and Notes:
▶ About 6,700 lines of bare metal ANSI C and 4,100 lines of Verilog.
▶ I wrote it mostly from scratch after the publication of FIPS 205 ipd.
▶ Actually Free: BSD 3-Clause License, no patent applications, etc.
▶ Shared implementation for all 12 parameters; 16.4kB binary “ROM” for all.
▶ Works with 64kB RAM (4kB stack – recall that signatures are up to 50kB).
▶ Clean split between the “algorithm core” and “hardware driver” components.

Software part “slh” also runs without special hardware (on any PC).
▶ (NIST CAVP was updated this week – targeting compliance with the final standard.)

10 / 19

https://github.com/slh-dsa/sloth

default

Block Diagram: Straightforward Memory-Mapped units (no DMA)

SHA2-256
Round

SHA2-512
Round

Keccak
Round

Threshold
Keccak

UART

RAM
128 kB

RV32
Core

S256<reg> S512<reg> KECC<reg> KTI3<reg>

32-bit Interconnect

GPIO

11 / 19

default

Example Register Map: KTI3_<reg> Threshold Keccak
Register Name Offset Bytes Brief description
_BASE_ADDR (0) (1024) Memory-mapped in prototype at 0x14000000.
KTI3_MEMA 0x0000 200 1600-bit Keccak permutation input-output state A.
KTI3_MEMB 0x00c8 200 Keccak secret state share B. (Only in TI3.)
KTI3_MEMC 0x0190 200 Keccak secret state share C. (Only in TI3.)
KTI3_ADRS 0x0260 32 32-byte ADRS structure for hash formatting.
KTI3_SEED 0x0280 32 Public key variable PK.seed for hash formatting.
KTI3_SKSA 0x02a0 32 Secret key SK.seed for PRF, share A.
KTI3_SKSB 0x02c0 32 Secret key SK.seed for PRF, share B. (Only in TI3.)
KTI3_SKSC 0x02e0 32 Secret key SK.seed for PRF, share C. (Only in TI3.)
KTI3_CTRL 0x03c0 4 Raw function control and status: Write 0x01 to start

raw Keccak f1600, read for status (0x00=ready).
KTI3_STOP 0x03c4 4 Round count (for TurboShake / KangarooTwelve).
KTI3_SECN 0x03c8 4 Security / field length write n ∈ {16, 24, 32}.
KTI3_CHNS 0x03cc 4 Iteration count & trigger for hashing and chaining.

- Set to s for s Winternitz F iterations.
- Set to 0x40 + s for PRF + s Winternitz F iterations.
- Set to 0x80 to perform initial padding for H or Tℓ.

12 / 19

default

Configurable Hardware: Artix 7 FPGA LUTs / ASIC Gate Equivalents

CPU+IX Keccak SHA2 SHA2 Keccak LUTs kGE
RV32IMC “plain” -256 -512 TI3 XC7A100T Nangate45

yes - - - - (3,023) (31.36)
yes - yes - - +2,463 +32.03
yes yes - - - +5,582 +41.72
yes yes yes - - +8.205 +73.52
yes - yes yes - +5,942 +82.36
yes yes yes yes - +10,857 +123.99

Full system, all SLH-DSA parameters: 14,428 155.35

yes yes - - yes +21,826 +173.22
yes yes yes yes yes +27,694 +254.48

Full system with Three-Share TI Keccak: 30,717 285.84

13 / 19

default

Configurable Hardware: Artix 7 FPGA LUTs / ASIC Gate Equivalents

CPU+IX Keccak SHA2 SHA2 Keccak LUTs kGE
RV32IMC “plain” -256 -512 TI3 XC7A100T Nangate45

yes - - - - (3,023) (31.36)
yes - yes - - +2,463 +32.03
yes yes - - - +5,582 +41.72
yes yes yes - - +8.205 +73.52
yes - yes yes - +5,942 +82.36
yes yes yes yes - +10,857 +123.99

Full system, all SLH-DSA parameters: 14,428 155.35

yes yes - - yes +21,826 +173.22
yes yes yes yes yes +27,694 +254.48

Full system with Three-Share TI Keccak: 30,717 285.84

13 / 19

default

Side Channels: Sensitive Variable Leakage

▶ SLH-DSA’smaster secret is SK.seed (with randomization SK.prf is redundant.)
Also: Many of the hashes are ephemeral secrets – allowing forgeries, if leaked.

▶ SLotH has a simple countermeasure of masked (TI) PRF + Winternitz chaining.
Note: The PRF key expander can be modeled as a random function of ADRS.
One can use a “custom PRF” without breaking interoperability with verification.

▶ A major issue for SLH-DSA in a RoT are fault attacks. Genêt [1] shows that:
A random bit-flip fault during signing can cause signatures to be generated
that will verify as correct while containing hashes that allow universal forgeries.
SLotH is relatively small & flexible; we can add more redundancy (future work.)

[1] Aymeric Genêt: “On Protecting SPHINCS+ Against Fault Attacks.”, CHES/TCHES 02/2023,
https://ia.cr/2023/042, 2023.

14 / 19

https://ia.cr/2023/042

default

Side Channels: Sensitive Variable Leakage

▶ SLH-DSA’smaster secret is SK.seed (with randomization SK.prf is redundant.)
Also: Many of the hashes are ephemeral secrets – allowing forgeries, if leaked.

▶ SLotH has a simple countermeasure of masked (TI) PRF + Winternitz chaining.
Note: The PRF key expander can be modeled as a random function of ADRS.
One can use a “custom PRF” without breaking interoperability with verification.

▶ A major issue for SLH-DSA in a RoT are fault attacks. Genêt [1] shows that:
A random bit-flip fault during signing can cause signatures to be generated
that will verify as correct while containing hashes that allow universal forgeries.
SLotH is relatively small & flexible; we can add more redundancy (future work.)

[1] Aymeric Genêt: “On Protecting SPHINCS+ Against Fault Attacks.”, CHES/TCHES 02/2023,
https://ia.cr/2023/042, 2023.

14 / 19

https://ia.cr/2023/042

default

Side Channels: Sensitive Variable Leakage

▶ SLH-DSA’smaster secret is SK.seed (with randomization SK.prf is redundant.)
Also: Many of the hashes are ephemeral secrets – allowing forgeries, if leaked.

▶ SLotH has a simple countermeasure of masked (TI) PRF + Winternitz chaining.
Note: The PRF key expander can be modeled as a random function of ADRS.
One can use a “custom PRF” without breaking interoperability with verification.

▶ A major issue for SLH-DSA in a RoT are fault attacks. Genêt [1] shows that:
A random bit-flip fault during signing can cause signatures to be generated
that will verify as correct while containing hashes that allow universal forgeries.
SLotH is relatively small & flexible; we can add more redundancy (future work.)

[1] Aymeric Genêt: “On Protecting SPHINCS+ Against Fault Attacks.”, CHES/TCHES 02/2023,
https://ia.cr/2023/042, 2023.

14 / 19

https://ia.cr/2023/042

default

Side Channels: Sensitive Variable Leakage

▶ SLH-DSA’smaster secret is SK.seed (with randomization SK.prf is redundant.)
Also: Many of the hashes are ephemeral secrets – allowing forgeries, if leaked.

▶ SLotH has a simple countermeasure of masked (TI) PRF + Winternitz chaining.
Note: The PRF key expander can be modeled as a random function of ADRS.
One can use a “custom PRF” without breaking interoperability with verification.

▶ A major issue for SLH-DSA in a RoT are fault attacks. Genêt [1] shows that:
A random bit-flip fault during signing can cause signatures to be generated
that will verify as correct while containing hashes that allow universal forgeries.
SLotH is relatively small & flexible; we can add more redundancy (future work.)

[1] Aymeric Genêt: “On Protecting SPHINCS+ Against Fault Attacks.”, CHES/TCHES 02/2023,
https://ia.cr/2023/042, 2023.

14 / 19

https://ia.cr/2023/042

default

Side Channels: Sensitive Variable Leakage

▶ SLH-DSA’smaster secret is SK.seed (with randomization SK.prf is redundant.)
Also: Many of the hashes are ephemeral secrets – allowing forgeries, if leaked.

▶ SLotH has a simple countermeasure of masked (TI) PRF + Winternitz chaining.
Note: The PRF key expander can be modeled as a random function of ADRS.
One can use a “custom PRF” without breaking interoperability with verification.

▶ A major issue for SLH-DSA in a RoT are fault attacks. Genêt [1] shows that:
A random bit-flip fault during signing can cause signatures to be generated
that will verify as correct while containing hashes that allow universal forgeries.
SLotH is relatively small & flexible; we can add more redundancy (future work.)

[1] Aymeric Genêt: “On Protecting SPHINCS+ Against Fault Attacks.”, CHES/TCHES 02/2023,
https://ia.cr/2023/042, 2023.

14 / 19

https://ia.cr/2023/042

default

Side Channels: Sensitive Variable Leakage

▶ SLH-DSA’smaster secret is SK.seed (with randomization SK.prf is redundant.)
Also: Many of the hashes are ephemeral secrets – allowing forgeries, if leaked.

▶ SLotH has a simple countermeasure of masked (TI) PRF + Winternitz chaining.
Note: The PRF key expander can be modeled as a random function of ADRS.
One can use a “custom PRF” without breaking interoperability with verification.

▶ A major issue for SLH-DSA in a RoT are fault attacks. Genêt [1] shows that:
A random bit-flip fault during signing can cause signatures to be generated
that will verify as correct while containing hashes that allow universal forgeries.
SLotH is relatively small & flexible; we can add more redundancy (future work.)

[1] Aymeric Genêt: “On Protecting SPHINCS+ Against Fault Attacks.”, CHES/TCHES 02/2023,
https://ia.cr/2023/042, 2023.

14 / 19

https://ia.cr/2023/042

default

Unprotected CPU Implementations Leak SK.seed

+6.42

−6.42

+4.50

+4.50

|t| > 24.5

Zoom of the first PRF in a non-accelerated TVLA shows strong leakage.

▶ Each SLH-DSA Signing operation has thousands of invocations of PRF, each
using SK.seed. So even a 1-trace (horizontal) attack reveals secret key bits.

▶ Unaccelerated SLH-DSA; just demonstrating leakage from the first PRF.

15 / 19

default

Unprotected CPU Implementations Leak SK.seed

+6.42

−6.42

+4.50

+4.50

|t| > 24.5

Zoom of the first PRF in a non-accelerated TVLA shows strong leakage.

▶ Each SLH-DSA Signing operation has thousands of invocations of PRF, each
using SK.seed. So even a 1-trace (horizontal) attack reveals secret key bits.

▶ Unaccelerated SLH-DSA; just demonstrating leakage from the first PRF.

15 / 19

default

Positive Assurance: N=100,000 Traces of SLotH with TI3

+7.06

−7.06

+4.50

−4.50
max |t| = 5.00

SK.seed autoloading + TI3 Keccak. TVLA: N = 100 000, L = 5 950 239, C = 7.06.

▶ TVLA with 3-share TI Keccak for PRF (SK.seed) and secret Winternitz hashes.
▶ Countermeasure doubles hardware size, but less than 25% performance hit.
▶ Even without TI3 Keccak, this implementation is reasonably secure due to its

parallel (1-cycle) loading of secrets. The software can “forget” secret key!

16 / 19

default

Positive Assurance: N=100,000 Traces of SLotH with TI3

+7.06

−7.06

+4.50

−4.50
max |t| = 5.00

SK.seed autoloading + TI3 Keccak. TVLA: N = 100 000, L = 5 950 239, C = 7.06.

▶ TVLA with 3-share TI Keccak for PRF (SK.seed) and secret Winternitz hashes.
▶ Countermeasure doubles hardware size, but less than 25% performance hit.
▶ Even without TI3 Keccak, this implementation is reasonably secure due to its

parallel (1-cycle) loading of secrets. The software can “forget” secret key!

16 / 19

default

Positive Assurance: N=100,000 Traces of SLotH with TI3

+7.06

−7.06

+4.50

−4.50
max |t| = 5.00

SK.seed autoloading + TI3 Keccak. TVLA: N = 100 000, L = 5 950 239, C = 7.06.

▶ TVLA with 3-share TI Keccak for PRF (SK.seed) and secret Winternitz hashes.
▶ Countermeasure doubles hardware size, but less than 25% performance hit.
▶ Even without TI3 Keccak, this implementation is reasonably secure due to its

parallel (1-cycle) loading of secrets. The software can “forget” secret key!

16 / 19

default

Performance (1/2): “Fast signature” (f) parameter sets

SLH-DSA-SHAKE-* SLH-DSA-SHA2-*
SLotH (PQM4) SLotH (PQM4)

Func. clk average clk/h clk/h × clk average clk/h clk/h ×
128f KG 176,552 39.3 13294.6 338.5 358,494 79.8 3423.4 42.9

Sign 4,903,978 46.7 14140.2 302.5 9,127,150 87.0 3645.8 41.9
Verify 440,636 71.1 13405.8 188.5 691,186 111.5 3413.5 30.6

192f KG 284,238 43.4 13500.4 310.8 541,583 82.8 3461.1 41.8
Sign 10,596,236 62.7 14267.0 227.4 23,726,217 140.5 3786.0 26.9

Verify 711,431 79.3 13744.0 173.4 1,290,921 143.9 3670.8 25.5
256f KG 815,609 47.5 13702.4 288.7 1,454,706 84.7 3480.7 41.1

Sign 23,660,226 68.5 14089.4 205.6 50,240,516 145.5 3710.5 25.5
Verify 857,059 94.9 14098.8 148.6 1,419,466 157.1 3646.5 23.2

▶ SLH-DSA-SHAKE-128f signing is 4.9M cycles or 19.6ms @ 250 MHz (XCVU9P).
▶ SHA2 variants are about half the speed of SHAKE (it’s a slower hash in HW.)
▶ SHAKE is 150-300× faster than embedded SW, SHA2 about 25-40× faster.

17 / 19

default

Performance (1/2): “Fast signature” (f) parameter sets

SLH-DSA-SHAKE-* SLH-DSA-SHA2-*
SLotH (PQM4) SLotH (PQM4)

Func. clk average clk/h clk/h × clk average clk/h clk/h ×
128f KG 176,552 39.3 13294.6 338.5 358,494 79.8 3423.4 42.9

Sign 4,903,978 46.7 14140.2 302.5 9,127,150 87.0 3645.8 41.9
Verify 440,636 71.1 13405.8 188.5 691,186 111.5 3413.5 30.6

192f KG 284,238 43.4 13500.4 310.8 541,583 82.8 3461.1 41.8
Sign 10,596,236 62.7 14267.0 227.4 23,726,217 140.5 3786.0 26.9

Verify 711,431 79.3 13744.0 173.4 1,290,921 143.9 3670.8 25.5
256f KG 815,609 47.5 13702.4 288.7 1,454,706 84.7 3480.7 41.1

Sign 23,660,226 68.5 14089.4 205.6 50,240,516 145.5 3710.5 25.5
Verify 857,059 94.9 14098.8 148.6 1,419,466 157.1 3646.5 23.2

▶ SLH-DSA-SHAKE-128f signing is 4.9M cycles or 19.6ms @ 250 MHz (XCVU9P).
▶ SHA2 variants are about half the speed of SHAKE (it’s a slower hash in HW.)
▶ SHAKE is 150-300× faster than embedded SW, SHA2 about 25-40× faster.

17 / 19

default

Performance (1/2): “Fast signature” (f) parameter sets

SLH-DSA-SHAKE-* SLH-DSA-SHA2-*
SLotH (PQM4) SLotH (PQM4)

Func. clk average clk/h clk/h × clk average clk/h clk/h ×
128f KG 176,552 39.3 13294.6 338.5 358,494 79.8 3423.4 42.9

Sign 4,903,978 46.7 14140.2 302.5 9,127,150 87.0 3645.8 41.9
Verify 440,636 71.1 13405.8 188.5 691,186 111.5 3413.5 30.6

192f KG 284,238 43.4 13500.4 310.8 541,583 82.8 3461.1 41.8
Sign 10,596,236 62.7 14267.0 227.4 23,726,217 140.5 3786.0 26.9

Verify 711,431 79.3 13744.0 173.4 1,290,921 143.9 3670.8 25.5
256f KG 815,609 47.5 13702.4 288.7 1,454,706 84.7 3480.7 41.1

Sign 23,660,226 68.5 14089.4 205.6 50,240,516 145.5 3710.5 25.5
Verify 857,059 94.9 14098.8 148.6 1,419,466 157.1 3646.5 23.2

▶ SLH-DSA-SHAKE-128f signing is 4.9M cycles or 19.6ms @ 250 MHz (XCVU9P).
▶ SHA2 variants are about half the speed of SHAKE (it’s a slower hash in HW.)
▶ SHAKE is 150-300× faster than embedded SW, SHA2 about 25-40× faster.

17 / 19

default

Performance (1/2): “Fast signature” (f) parameter sets

SLH-DSA-SHAKE-* SLH-DSA-SHA2-*
SLotH (PQM4) SLotH (PQM4)

Func. clk average clk/h clk/h × clk average clk/h clk/h ×
128f KG 176,552 39.3 13294.6 338.5 358,494 79.8 3423.4 42.9

Sign 4,903,978 46.7 14140.2 302.5 9,127,150 87.0 3645.8 41.9
Verify 440,636 71.1 13405.8 188.5 691,186 111.5 3413.5 30.6

192f KG 284,238 43.4 13500.4 310.8 541,583 82.8 3461.1 41.8
Sign 10,596,236 62.7 14267.0 227.4 23,726,217 140.5 3786.0 26.9

Verify 711,431 79.3 13744.0 173.4 1,290,921 143.9 3670.8 25.5
256f KG 815,609 47.5 13702.4 288.7 1,454,706 84.7 3480.7 41.1

Sign 23,660,226 68.5 14089.4 205.6 50,240,516 145.5 3710.5 25.5
Verify 857,059 94.9 14098.8 148.6 1,419,466 157.1 3646.5 23.2

▶ SLH-DSA-SHAKE-128f signing is 4.9M cycles or 19.6ms @ 250 MHz (XCVU9P).
▶ SHA2 variants are about half the speed of SHAKE (it’s a slower hash in HW.)
▶ SHAKE is 150-300× faster than embedded SW, SHA2 about 25-40× faster.

17 / 19

default

Performance (2/2): “Small signature” (s) parameter sets

SLH-DSA-SHAKE-* SLH-DSA-SHA2-*
SLotH (PQM4) SLotH (PQM4)

Func. clk average clk/h clk/h × clk average clk/h clk/h ×
128s KG 11,180,642 38.9 13294.3 342.1 22,709,640 78.9 3424.5 43.4

Sign 102,346,701 46.8 13306.1 284.2 190,085,952 87.0 3429.0 39.4
Verify 179,603 84.5 13870.8 164.2 268,445 126.2 3369.9 26.7

192s KG 18,038,904 43.1 13497.4 313.4 34,280,105 81.9 3462.3 42.3
Sign 263,100,826 69.8 13492.5 193.2 626,858,593 166.4 3654.0 22.0

Verify 289,825 94.7 13620.7 143.8 641,048 209.5 3843.6 18.4
256s KG 13,003,653 47.3 13691.4 289.5 23,174,830 84.3 3465.4 41.1

Sign 296,265,468 90.3 13674.5 151.4 696,201,400 212.2 3750.9 17.7
Verify 469,973 105.6 13993.7 132.5 894,078 200.9 3756.7 18.7

▶ SLH-DSA-SHAKE-128s verificaton is only 179.6k cycles or 0.72ms @ 250 MHz.
▶ But signing with s variants is of course 20× slower than with f variants.
▶ Core hash utilization even with SHAKE is often within 50% of optimal.

18 / 19

default

Performance (2/2): “Small signature” (s) parameter sets

SLH-DSA-SHAKE-* SLH-DSA-SHA2-*
SLotH (PQM4) SLotH (PQM4)

Func. clk average clk/h clk/h × clk average clk/h clk/h ×
128s KG 11,180,642 38.9 13294.3 342.1 22,709,640 78.9 3424.5 43.4

Sign 102,346,701 46.8 13306.1 284.2 190,085,952 87.0 3429.0 39.4
Verify 179,603 84.5 13870.8 164.2 268,445 126.2 3369.9 26.7

192s KG 18,038,904 43.1 13497.4 313.4 34,280,105 81.9 3462.3 42.3
Sign 263,100,826 69.8 13492.5 193.2 626,858,593 166.4 3654.0 22.0

Verify 289,825 94.7 13620.7 143.8 641,048 209.5 3843.6 18.4
256s KG 13,003,653 47.3 13691.4 289.5 23,174,830 84.3 3465.4 41.1

Sign 296,265,468 90.3 13674.5 151.4 696,201,400 212.2 3750.9 17.7
Verify 469,973 105.6 13993.7 132.5 894,078 200.9 3756.7 18.7

▶ SLH-DSA-SHAKE-128s verificaton is only 179.6k cycles or 0.72ms @ 250 MHz.
▶ But signing with s variants is of course 20× slower than with f variants.
▶ Core hash utilization even with SHAKE is often within 50% of optimal.

18 / 19

default

Performance (2/2): “Small signature” (s) parameter sets

SLH-DSA-SHAKE-* SLH-DSA-SHA2-*
SLotH (PQM4) SLotH (PQM4)

Func. clk average clk/h clk/h × clk average clk/h clk/h ×
128s KG 11,180,642 38.9 13294.3 342.1 22,709,640 78.9 3424.5 43.4

Sign 102,346,701 46.8 13306.1 284.2 190,085,952 87.0 3429.0 39.4
Verify 179,603 84.5 13870.8 164.2 268,445 126.2 3369.9 26.7

192s KG 18,038,904 43.1 13497.4 313.4 34,280,105 81.9 3462.3 42.3
Sign 263,100,826 69.8 13492.5 193.2 626,858,593 166.4 3654.0 22.0

Verify 289,825 94.7 13620.7 143.8 641,048 209.5 3843.6 18.4
256s KG 13,003,653 47.3 13691.4 289.5 23,174,830 84.3 3465.4 41.1

Sign 296,265,468 90.3 13674.5 151.4 696,201,400 212.2 3750.9 17.7
Verify 469,973 105.6 13993.7 132.5 894,078 200.9 3756.7 18.7

▶ SLH-DSA-SHAKE-128s verificaton is only 179.6k cycles or 0.72ms @ 250 MHz.
▶ But signing with s variants is of course 20× slower than with f variants.
▶ Core hash utilization even with SHAKE is often within 50% of optimal.

18 / 19

default

Performance (2/2): “Small signature” (s) parameter sets

SLH-DSA-SHAKE-* SLH-DSA-SHA2-*
SLotH (PQM4) SLotH (PQM4)

Func. clk average clk/h clk/h × clk average clk/h clk/h ×
128s KG 11,180,642 38.9 13294.3 342.1 22,709,640 78.9 3424.5 43.4

Sign 102,346,701 46.8 13306.1 284.2 190,085,952 87.0 3429.0 39.4
Verify 179,603 84.5 13870.8 164.2 268,445 126.2 3369.9 26.7

192s KG 18,038,904 43.1 13497.4 313.4 34,280,105 81.9 3462.3 42.3
Sign 263,100,826 69.8 13492.5 193.2 626,858,593 166.4 3654.0 22.0

Verify 289,825 94.7 13620.7 143.8 641,048 209.5 3843.6 18.4
256s KG 13,003,653 47.3 13691.4 289.5 23,174,830 84.3 3465.4 41.1

Sign 296,265,468 90.3 13674.5 151.4 696,201,400 212.2 3750.9 17.7
Verify 469,973 105.6 13993.7 132.5 894,078 200.9 3756.7 18.7

▶ SLH-DSA-SHAKE-128s verificaton is only 179.6k cycles or 0.72ms @ 250 MHz.
▶ But signing with s variants is of course 20× slower than with f variants.
▶ Core hash utilization even with SHAKE is often within 50% of optimal.

18 / 19

default

Final Notes and Conclusions

▶ SLotH is a free, fully open-source SLH-DSA accelerator architecture under
development (for SoC RoTs). https://github.com/slh-dsa/sloth

Findings:
▶ You can make SLH-DSA about 10× faster on hash accelerators by automating

message formats (PK.seed, SK.seed, ADRS registers) and Winternitz chain().
Useful reminder: Quantitative analysis is essential for understanding bottlenecks.

Side-Channel Security:
▶ Having a hardware SK.seed register, fast/parallel hash set-up helps a lot.
▶ SLotH has a 3-share TI Keccak option – very big, but fully KAT compatible.
▶ Custom PRF’s can be considered – verification remains compatible.
▶ However, fault attacks remain a big problem for SLH-DSA [Genêt, CHES 2023].

19 / 19

https://github.com/slh-dsa/sloth

default

Final Notes and Conclusions

▶ SLotH is a free, fully open-source SLH-DSA accelerator architecture under
development (for SoC RoTs). https://github.com/slh-dsa/sloth

Findings:
▶ You can make SLH-DSA about 10× faster on hash accelerators by automating

message formats (PK.seed, SK.seed, ADRS registers) and Winternitz chain().
Useful reminder: Quantitative analysis is essential for understanding bottlenecks.

Side-Channel Security:
▶ Having a hardware SK.seed register, fast/parallel hash set-up helps a lot.
▶ SLotH has a 3-share TI Keccak option – very big, but fully KAT compatible.
▶ Custom PRF’s can be considered – verification remains compatible.
▶ However, fault attacks remain a big problem for SLH-DSA [Genêt, CHES 2023].

19 / 19

https://github.com/slh-dsa/sloth

default

Final Notes and Conclusions

▶ SLotH is a free, fully open-source SLH-DSA accelerator architecture under
development (for SoC RoTs). https://github.com/slh-dsa/sloth

Findings:
▶ You can make SLH-DSA about 10× faster on hash accelerators by automating

message formats (PK.seed, SK.seed, ADRS registers) and Winternitz chain().
Useful reminder: Quantitative analysis is essential for understanding bottlenecks.

Side-Channel Security:
▶ Having a hardware SK.seed register, fast/parallel hash set-up helps a lot.
▶ SLotH has a 3-share TI Keccak option – very big, but fully KAT compatible.
▶ Custom PRF’s can be considered – verification remains compatible.
▶ However, fault attacks remain a big problem for SLH-DSA [Genêt, CHES 2023].

19 / 19

https://github.com/slh-dsa/sloth

default

Final Notes and Conclusions

▶ SLotH is a free, fully open-source SLH-DSA accelerator architecture under
development (for SoC RoTs). https://github.com/slh-dsa/sloth

Findings:
▶ You can make SLH-DSA about 10× faster on hash accelerators by automating

message formats (PK.seed, SK.seed, ADRS registers) and Winternitz chain().
Useful reminder: Quantitative analysis is essential for understanding bottlenecks.

Side-Channel Security:
▶ Having a hardware SK.seed register, fast/parallel hash set-up helps a lot.
▶ SLotH has a 3-share TI Keccak option – very big, but fully KAT compatible.
▶ Custom PRF’s can be considered – verification remains compatible.
▶ However, fault attacks remain a big problem for SLH-DSA [Genêt, CHES 2023].

19 / 19

https://github.com/slh-dsa/sloth

default

Final Notes and Conclusions

▶ SLotH is a free, fully open-source SLH-DSA accelerator architecture under
development (for SoC RoTs). https://github.com/slh-dsa/sloth

Findings:
▶ You can make SLH-DSA about 10× faster on hash accelerators by automating

message formats (PK.seed, SK.seed, ADRS registers) and Winternitz chain().
Useful reminder: Quantitative analysis is essential for understanding bottlenecks.

Side-Channel Security:
▶ Having a hardware SK.seed register, fast/parallel hash set-up helps a lot.
▶ SLotH has a 3-share TI Keccak option – very big, but fully KAT compatible.
▶ Custom PRF’s can be considered – verification remains compatible.
▶ However, fault attacks remain a big problem for SLH-DSA [Genêt, CHES 2023].

19 / 19

https://github.com/slh-dsa/sloth

default

Final Notes and Conclusions

▶ SLotH is a free, fully open-source SLH-DSA accelerator architecture under
development (for SoC RoTs). https://github.com/slh-dsa/sloth

Findings:
▶ You can make SLH-DSA about 10× faster on hash accelerators by automating

message formats (PK.seed, SK.seed, ADRS registers) and Winternitz chain().
Useful reminder: Quantitative analysis is essential for understanding bottlenecks.

Side-Channel Security:
▶ Having a hardware SK.seed register, fast/parallel hash set-up helps a lot.
▶ SLotH has a 3-share TI Keccak option – very big, but fully KAT compatible.
▶ Custom PRF’s can be considered – verification remains compatible.
▶ However, fault attacks remain a big problem for SLH-DSA [Genêt, CHES 2023].

19 / 19

https://github.com/slh-dsa/sloth

default

Final Notes and Conclusions

▶ SLotH is a free, fully open-source SLH-DSA accelerator architecture under
development (for SoC RoTs). https://github.com/slh-dsa/sloth

Findings:
▶ You can make SLH-DSA about 10× faster on hash accelerators by automating

message formats (PK.seed, SK.seed, ADRS registers) and Winternitz chain().
Useful reminder: Quantitative analysis is essential for understanding bottlenecks.

Side-Channel Security:
▶ Having a hardware SK.seed register, fast/parallel hash set-up helps a lot.
▶ SLotH has a 3-share TI Keccak option – very big, but fully KAT compatible.
▶ Custom PRF’s can be considered – verification remains compatible.
▶ However, fault attacks remain a big problem for SLH-DSA [Genêt, CHES 2023].

19 / 19

https://github.com/slh-dsa/sloth

	Introduction
	FIPS 205, SLH-DSA (Stateless Hash-Based Digital Signature Standard)
	SLotH: SLH-DSA Architecture for SoC Root-of-Trust (RoT) Units
	10 Faster than big CPUs, over 100 Faster than Embedded SW
	.. Why/How?

	Quantitative Analysis
	SLH-DSA Hash Primitive Formats
	Hash Primitive Counts

	Hardware and Software
	SLH-DSA Side-Channel Properties and Performance Notes
	Side Channels: Sensitive Variable Leakage
	Final Notes and Conclusions

