
PQC on Microchips:
Processors, Secure Elements, and SoCs
Markku-Juhani O. Saarinen
<markku-juhani.saarinen@tuni.fi>

Paris October 11, 2024
IHP / Deployment of PQC Workshop

Hello! I’m Markku-Juhani O. Saarinen 👋

Some random biographical things:

- Started as a cryptographer in 1997 at SSH Communications Security. Helped create SSH2.

- Moved to technical consulting (mainly in the Middle East) + Pentest gigs, PCI DSS audits.

- Got bored & went back to school. PhD Royal Holloway 2009 (hash function cryptanalysis.)

- Post-doc periods and more industry gigs followed. Post-Quantum stuff since ~2015.

- First employee at PQShield Ltd, Oxford UK in 2018. Architected, tinkered, prototyped,

patented, and helped license hardware PQC modules to semiconductor companies.

- RISC-V Stuff since 2019. I designed some of the now-standard crypto instructions.

- Chair, RISC-V International Post-Quantum Cryptography Task Group (RVI PQC TG).

- Drifted back to Finland in 2023-24, now a Professor of Practice at Tampere University.

- Program Co-Chair, PQCrypto 2025 (Taipei April 8-10, 2025): Submit Papers by October 25!

2

3

Hardware View: Crypto functions on a SoC

Main CPU complex: TLS handshakes;
asymmetric ops, X.509, crypto in apps.
Can have ISA extensions up in the CPU.

Root of Trust (RoT): SoC-wide Platform
Security. Isolated MCU + accelerators.

Disk or storage controller: E.g. AES-XTS.

Network Controller: Bulk symmetric
encryption (e.g. TLS AES-GCM Frames).

We often want to not use the main CPU for cryptography tasks..

Current Focus: NIST PQC Standards

KEY ESTABLISHMENT

Kyber: FIPS 203 ML-KEM (2024)

Primary PQC key establishment algorithm to
replace Diffie-Hellman (ECDH) key exchange and
RSA public-key encryption. Lattice-based.

Some of { HQC, BIKE, Classic McEliece } (2025?)

Being evaluated in "Round 4." Code-based key
establishment algorithms. Longer public keys.

Hybrid schemes: One still needs to support
traditional Elliptic Curve and RSA methods.

DIGITAL SIGNATURES

Dilithium: FIPS 204 ML-DSA (2024)

Primary "general-purpose" PQC signature
algorithm to replace ECDSA, RSA signatures.
Lattice-based.

XMSS and LMS: NIST SP 800-208 (2020)

SPHINCS+: FIPS 205 SLH-DSA (2024)

Hash-based signatures; Firmware signing.

Falcon: FIPS 206 FN-DSA (2025). Lattice-based.

Signature "On-Ramp" Algorithms (2026?)

Helicopter View: Approx CPU and RoT Roles

- Boot process can use Dilithium, but hash-based signatures XMSS/LMS (SP
800-208) or SPHINCS+ (FIPS 205) are also often recommended.

Boot verification processing is often performed by the Root of Trust unit.

- TLS (or QUIC, IPSEC, SSH) key exchange latency affects user experience and
overall power profile. Both Kyber and Dilithium will be used here (KEX+Auth.)

This processing is usually done by the Application Processor units.

- Good news: New lattice-based PQC algorithms are usually faster or roughly
same speed as classical crypto. But any speedup is welcome.

Part 1: Application Processor PQC Support

These cores run the “visible” OS:

- In Kernel: IPSec, WireShark
- Sometimes also storage encryption
- Standard apps and libraries: TLS, QUIC
- OS tools, services: SSH, GnuPG
- User applications: Signal, WhatsApp, ..

Crypto acceleration mostly done with
instruction set features (for scalability).

Typically timing attack protection only.

Kyber Compute: Vectors (mod 3329) + Keccak

Reference Kyber-768: 2.26M Insn
KG 600k + Enc 734k + Dec 921k

Instret (with vlen:128,elen:64) - LLVM 18 snapshot, Oct 2023. -Ofast -march=rv64gcv_zbb (zvk)

Compute in NIST Lattice Crypto:

- Keccak i.e. SHA3/SHAKE operations.
Typically well >50% of overall cycles.

- Number Theoretic Transforms.
Vectorizable functions (256 x 16/32.)

- Other polynomial arithmetic. Mostly
integer vectors; shifts, adds, sub.

- Samplers (rejection and CBD),
rounding, "packing" (serialize).

ML-DSA-44 Sign: Avg 4.60M Insn

ML-DSA-87 Sign: Avg 8.37M Insn

ML-DSA-44 Verify: 1.16M Insn

ML-DSA-87 Verify: 3.09M Insn

Instret (with vlen:128,elen:64) - LLVM 18 snapshot, Oct 2023. -Ofast -march=rv64gcv_zbb (zvk)

Dilithium: Vectors (mod 8380417) + Keccak

Keccak f1600: The core of SHA3 & SHAKE

- SHA3 and SHAKE (FIPS 202) are built on the 25×64=1600-bit Keccak
permutation. >50% of ML-KEM, ML-DSA Cycles, >90% SLH-DSA here.

- 24 Rounds, 1600-bit state. Relatively slow in software but very fast in
hardware (but rather large area.) A lot of XORs and NOT-AND gates.

Main PQC TG Proposal: A Keccak Instruction

Keccak state is little awkward to fit into vector architecture:

- Seemingly VLEN ≥ 256 is required (the max LMUL value is 8.)

- Element EEW = 64. Element group EGS = 32, LMUL = 2048 / VLEN:

- VLEN = 256: LMUL = 8: A group of 8 vector registers of 256 bits.

- VLEN = 512: LMUL = 4: A group of 4 vector registers of 512 bits.

Multi-round instruction (due to complexity of accessing 25 words):

vkeccak.vi vd, vs2, imm # imm = 5-bit num rounds

Computes 24 rounds of Keccak-p[1600,24] permutation with imm=24.

(Ed. note: Sorry about jargon & acronyms, this slide was made for RISC-V Summit!!)

Optimizing Kyber & Dilithium with Vector/SIMD

Application-class RISC-V processors have vector instructions available, similarly
to AVX SIMD on Intel and NEON, SVA on ARM architectures.

We optimized Kyber and Dilithium with RISC-V Vector Intrinsics / CLANG 20.

Benchmarked with SpacemiT X60 (VLEN=256) & C908 (VLEN=128) silicon:

- Vector really helps (~5x speedup) with arithmetic parts (NTT) and
somewhat with the bit packing and sampling too.

- Vector does not help SHA3/SHAKE much -- that becomes a bottleneck.

Clang 20.0.0git -O3 with –march=rv64gc / rv64gcv_zbb_zvl256b

Lines 1-3 uses C language reference Keccak f1600; 4,038 instructions.

Line 4 uses SPIKE 1 cycle Keccak. In real-life in hardware ~100 cycles.

KeyGen() Encaps() Decaps() TOTAL Speedup

RV64GC 663,067 815,357 1,006,469 2,484,893 1.00
RV64GCV+ZBB 546,631 685,201 858,508 2,090,340 1.19
w. Intrinsics 223,400 239,714 262,241 725,355 3.43
w. Keccak Insn 49,363 61,632 84,120 195,115 12.74

Impact: Kyber-768 (ML-KEM) Key Exchange

Keccak Instruction: Microarchitecture Notes
In "Marian" we extended the PULP Ara2
vector unit with Zvk crypto instructions.

We used a 256-bit "operand collector"
because of the VRF structure. VRF is split
into lanes. Each lane only has 64-bit
segments of each reg; need to combine.

Keccak would need a 1600-bit collector.

But would probably still be worthwhile!

https://github.com/soc-hub-fi/Marian

https://github.com/soc-hub-fi/Marian

PQC Support: RISC-V PQC TG Recommendation

Keccak instruction seems like a winner, giving significant speedups for all PQC

algorithms. NTT can also be considered, but RVV already helps a lot with that.

This instruction is replacing thousands of instructions. Core f1600 permutation is 24

cycles. Together with operand collection + writeback can still be under 100.

Hardware note: Permutation alone is about 40kGE + "operand collector" logic.

PQC speedup of Keccak Insn. on RVV ~2-4x. Quite easy to integrate into software.

Microarchitecturally awkward but saves device battery / $$$ in data centre.

Timing Attacks – ISA Support
Some Greatest Hits (in asymmetric crypto TA) Along the Years:

- P.C. Kocher: "Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems." (CRYPTO 1996. Target: RSAREF 2.0 running on MS-DOS.)

- D. Brumley and D. Boneh: "Remote timing attacks are practical."
(USENIX Security 2003. OpenSSL RSA remote key recovery, CVE-2003-0147.)

- B. Brumley and N. Toveri: "Remote Timing Attacks Are Still Practical."
(ESORICS 2011. OpenSSL ECDSA remote key recovery, CVE-2011-1945.)

- Q. Guo, T. Johansson. A. Nilsson, "A key-recovery timing attack on post-quantum
primitives using the Fujisaki-Okamoto transformation and its application on
FrodoKEM." (Crypto 2020, PC Oracle, demoed against a claimed const-time impl.)

 Every generation gets to learn the special implementation tricks!

Basic Sources of Timing Leaks
(That are avoidable with careful programming)

1. Secret-controlled branches and loops:

if <secret> then { delay1(); } else { delay2(); }

2. Memory accesses (cache timing attacks). Can be a load or store.

ct = SBox[pt ^ key]; // observe latency with different inputs.

3. Arithmetic operations whose processing time just depends on inputs

x = y % q; // division and remainder ops are rarely constant-time.

When Hiring a (Post-Quantum) Crypto Dev..
Constant-time coding / algorithm knowledge is fundamental

- Have a “library” of solid CT replacements for memcmp() and similar functions.

- Identify conditionals, transform to straight-line code using Boolean operations? 🤔
 x = s ? a : b; vs. x = b ^ ((-(s & 1)) & (a ^ b));

- Table-lookups: Bit-slicing (entire thing as a Boolean circuit), “full scan / collect”.

- No division instructions in modular arithmetic (use Montgomery, Barrett etc.)

- Know how to test with symbolic execution (e.g. valgrind) or on instruction level..

.. etc .. these are core crypto programming skills!

Analyze source code, Verify Implementation
RISC-V “Data Independent Execution Latency” (DIEL)

- One can use e.g. valgrind or other static or dynamic analysis tools to validate
constant-time properties. (Secret variables need to be “annotated.”)

- Compilers don’t know about “constant time” – need to verify machine code.

- Note: `Constant-timeness’’ of Intel and ARM: mostly from experiments.

- RISC-V CETG codified timing as the Zkt extension for scalar, and the Zvkt DIEL
(Data Independent Extension Latency) instruction list for vector.
Included in the manual: https://github.com/riscv/riscv-isa-manual/releases

https://github.com/riscv/riscv-isa-manual/releases

Part 2: The “Invisible” Chip Cryptography

- Vendors (Intel, AMD, Apple, Google, NVIDIA, Qualcomm, Google, … but also
RISC-V system makers) need to be able to update their system chips.

- This creates incredible supply chain risks – think of a rootkit or malware in a
microcode update to an Intel CPU. This is completely invisible to OS & users.

- Ecosystems (Android, Windows, Apple OS) and device vendors want to
protect their devices against “jailbreaking” and unauthorized modification.

- Consequence: Much more serious measures are taken to protect the chips
and devices themselves than any user application running on them. 🤷

21

Evaluating Attacks against PQC Modules

- High assurance level (EUCC: equivalent to
AVA_VAN.3 or above) is a requirement for
Root of Trust IP, Smart Cards, Secure
elements, many types of IoT (SESIP).

- While FIPS testing focuses on “checklist
compliance”, AVA_VAN checks real-life
security via a “penetration test.”

- ISO 17825 / FIPS 140-3 “non-invasive”
leakage assessment ignores many practical
physical attacks (e.g. FIA).

“Evaluators must have knowledge and
experience of [..] side channel attacks (SCA)
such as Timing Analysis,
Machine Learning based SCA,
Simple Power Analysis (SPA),
Differential Power Analysis (DPA),
Differential EM radiation Analysis (DEMA),
Template Attacks (TA);
fault injection attacks such as DFA [..]”

 – EUCC v1.1.1 (also SOG-IS Documents)

Protection Profiles for Chip Security

AVA_VAN.3+ is a common requirement for Root of Trust and Security IC products.
We assume that this will not change (much) with Post-Quantum Cryptography.

[JSADEN011] “SESIP Profile for PSA Certified™ Level 3”
Root of Trust (PSA-RoT): 35 person-days of AVA_VAN.3 activities.

[PP-0084] “Security IC Platform Protection Profile”
EAL 4 augmented by AVA_VAN.5 and ALC_DVS.2

[PP-0117] “Secure Sub-System in System-on-Chip (3S in SoC)”
EAL 4 augmented by ATE_DPT.2, AVA_VAN.5, ALC_DVS.2 and ALC_FLR.2

23

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/ReportePP/pp0117V2b_pdf.pdf

(F
ro

m
 P

P-
01

17
)

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/ReportePP/pp0117V2b_pdf.pdf

AVA_VAN: Common Criteria Vulnerability Analysis

Attack Potential is evaluated with a
score-based system that roughly maps to
the “cost of attack.” (think $ or €)

Considers attack Identification +
exploitation, with many factors:

- Elapsed time (hours–months)
- Attacker Expertise (multiple)
- Knowledge (how restricted)
- Access to the TOE (samples)
- Equipment (common/bespoke)

(“Application of Attack Potential” docs.)

AVA_VAN.1 Vulnerability Survey
- TOE resistance against BASIC Attack Potential (0-15)

AVA_VAN.2 (Unstructured) Vuln. Analysis
- TOE resistance against BASIC Attack Potential (16-20)

AVA_VAN.3 Focused (Unstructured) Vuln. Analysis
- TOE resistance against ENHANCED-BASIC AP (21-24)

AVA_VAN.4 Methodical Vuln. Analysis
- TOE resistance against MODERATE AP (25-30)

AVA_VAN.5 Advanced Methodical Vuln. Analysis
- TOE resistance against HIGH Attack Potential (31-)

Post-Quantum vs. AVA_VAN

26

Attack Potential: Example Calculation

AP Component Identification Exploitation
Elapsed time 2 (< one week) 6 (< one month)
Expertise 5 (expert) 4 (expert)
Knowledge of the TOE 4 (sensitive) 0 (public)
Access to the TOE 0 (< 10 samples) 0 (< 10 samples)
Equipment 3 (specialized) 4 (specialized)
Open Samples 0 (public) 0 (public)
Total 28 (AVA_VAN.4 / moderate AP range)

SOG-IS: “Application of Attack Potential to Smartcards and Similar Devices”

Inherited Application Requirements
Platform Security / RoT, Smart Cards, Authentication Tokens, etc

Side-Channel and Fault Attacks

Fault Injection (FI)

Different Applications have Different Requirements

Timing Attacks

Electromagnetic
(SEMA/DEMA)

Power (SPA/DPA)
Physical

Proximity
Invasive
Attacks

Logical or
RemoteNon-invasive

Attacks

Invasive
Physical

