PQC on Microchips:
Processors, Secure Elements, and SoCs

Markku-Juhani O. Saarinen

<markku-juhani.saarinen@tuni.fi>

.

= "] Tampereen yliopisto
Tampere University

Hello! I'm Markku-Juhani O. Saarinen

Some random biographical things:

Started as a cryptographer in 1997 at SSH Communications Security. Helped create SSH2.
Moved to technical consulting (mainly in the Middle East) + Pentest gigs, PCI DSS audits.
Got bored & went back to school. PhD Royal Holloway 2009 (hash function cryptanalysis.)
Post-doc periods and more industry gigs followed. Post-Quantum stuff since ~2015.
First employee at PQShield Ltd, Oxford UK in 2018. Architected, tinkered, prototyped,
patented, and helped license hardware PQC modules to semiconductor companies.
RISC-V Stuff since 2019. | designed some of the now-standard crypto instructions.

- Chair, RISC-V International Post-Quantum Cryptography Task Group (RVI PQC TG).
Drifted back to Finland in 2023-24, now a Professor of Practice at Tampere University.
Program Co-Chair, PQCrypto 2025 (Taipei April 8-10, 2025): Submit Papers by October 25!

2

[

ANII NOW I’OST (QUANTUM GBYPTOGHAPHY

w4 «
i 4;~. *

GOES INTOYOUR COMPUTER'
S0C;AGCRAZILY,COMBLEXMICROCHIES

imgfiip.com 2 p

Hardware View: Crypto functions on a SoC

We often want to not use the main CPU for cryptography tasks..

Main CPU complex: TLS handshakes;
asymmetric ops, X.509, crypto in apps.
Can have ISA extensions up in the CPU.

Root of Trust (RoT): SoC-wide Platform
Security. Isolated MCU + accelerators.

Disk or storage controller: E.g. AES-XTS.

Network Controller: Bulk symmetric
encryption (e.g. TLS AES-GCM Frames).

SoC Physical Boundary

Eth K\Ietwork Controller

Radio
PHY

Disks:
SSD
Flash

DRAM

AES-GCM
(Streaming TLS)

Storage Controller
AES-XTS
(Full-Disk Encrypt)

Memory Controller
AES-XTS

czc \(Memory Encrypt)

' SHA2/3, SLH-DSA

. (Boot, Key Mgmt)
' RoT Sec. ébﬁﬁdér}/

Main CPU Cores

AES, SHA2, SHAS,
ECDH, ECDSA,
ML-DSA, ML-KEM

(Handshake, Auth.,
Apps' Encryption)

Root of Trust

Current Focus: NISTPAC Standards ey qgig”

KEY ESTABLISHMENT DIGITAL SIGNATURES

Kyber: FIPS 203 ML-KEM (2024) Dilithium: FIPS 204 ML-DSA (2024)

Primary PQC key establishment algorithm to Primary "general-purpose"” PQC signature
replace Diffie-Hellman (ECDH) key exchange and algorithm to replace ECDSA, RSA signatures.
RSA public-key encryption. Lattice-based. Lattice-based.

Some of { HQC, BIKE, Classic McEliece } (2025?) XMSS and LMS: NIST SP 800-208 (2020)

Being evaluated in "Round 4." Code-based key SPHINCS+: FIPS 205 SLH-DSA (2024)

establishment algorithms. Longer public keys. Hashibased sighatures; Eifmware signing.

Falcon: FIPS 206 EN-DSA (2025). Lattice-based.

Hybrid schemes: One still needs to support . " " -
-R Al h 20267
traditional Elliptic Curve and RSA methods. Signature "On-Ramp" Algorithms (2026?)

Helicopter View: Approx CPU and RoT Roles

- Boot process can use Dilithium, but hash-based signatures XMSS/LMS (SP
800-208) or SPHINCS+ (FIPS 205) are also often recommended.

Boot verification processing is often performed by the Root of Trust unit.

- TLS (or QUIC, IPSEC, SSH) key exchange latency affects user experience and
overall power profile. Both Kyber and Dilithium will be used here (KEX+Auth.)

This processing is usually done by the Application Processor units.

- Good news: New lattice-based PQC algorithms are usually faster or roughly
same speed as classical crypto. But any speedup is welcome.

=%<tra hash can be?

asha Frolov and Rafael Misoczki

e Key exchange is a (very) commonly performed operation at Meta

o Currently, “0.05% of CPU cycles in Meta’s data centers are spent doing X25519 key exchange

o We hope this data point is useful for making cost estimates while defining PQC standards specs

® This mea

o Deploying post-quantum key exchange has a non-negligible capacity cost

o Apparently innocuous steps can cost hundreds of thousands or even millions of dollars a year

m e.g. extra hashing steps, like hashing randomness or hashing parts of the transcript, which are

being discussed as part of finalizing Kyber specification

s Even if an extra step does not affect latency, the extra power usage/consumption of shared

resources on highly parallel servers still has costs

Feedback? Write to sashafrolov@meta.com or rafam@meta.com.

Part 1: Application Processor PQC Support

These cores run the “visible” OS:

- In Kernel: IPSec, WireShark

- Sometimes also storage encryption

- Standard apps and libraries: TLS, QUIC
- OS tools, services: SSH, GnuPG

- User applications: Signal, WhatsApp, ..

.' 1.
5‘
A

e

=

- AP Tl X o IR
i ¢ = o . L;‘ = : 3
¥ 1 zﬂ N s e ! |

e

L}

| D

A Rkl .
5103 oo W | W
st

=

Crypto acceleration mostly done with
instruction set features (for scalability).

Typically timing attack protection only.

Kyber Compute: Vectors (mod 3329) + Keccak

Reference Kyber-768: 2.26M Insn Compute in NIST Lattice Crypto:

KG 600k + Enc 734k + Dec 921k - Keccak i.e. SHA3/SHAKE operations.
Typically well >50% of overall cycles.

P (Rest),17.5%1TT,13.4%

- Number Theoretic Transforms.

K «NTT . .
INTT Vectorizable functions (256 x 16/32.)
_ Red,8.0% 15. . . .
— Eecci; T Other polynomial arithmetic. Mostly
-»:szjRe; integer vectors; shifts, adds, sub.
“(Rest) _ samplers (rejection and CBD),

rounding, "packing" (serialize).

Keccak,24.1%

Instret (with vlen:128,elen:64) - LLVM 18 snapshot, Oct 2023. -Ofast -march=rv64gcv_zbb (zvk)

Dilithium: Vectors (mod 8380417) + Keccak

ML-DSA-44 Sign: Avg 4.60M Insn ML-DSA-44 Verify: 1.16M Insn
ML-DSA-87 Sign: Avg 8.37M Insn ML-DSA-87 Verify: 3.09M Insn

(Rest),20.8% I} NTT,18.1%
(Rest),24.4%

*NTT *NTT
: =“INTT =INTT
BaseMul,11.4% S =Keccak | = =Keccak
i BaseMul BaseMu"ﬁ% BaseMul
=(Rest) “(Rest)

INTT,31.7%

Keccak,17.9%

Instret (with vlen:128,elen:64) - LLVM 18 snapshot, Oct 2023. -Ofast -march=rv64gcv_zbb (zvk)

Keccak f1600: The core of SHA3 & SHAKE

-SHA3 and SHAKE (FIPS 202) are built on the 25x64=1600-bit Keccak
permutation. >50% of ML-KEM, ML-DSA Cycles, >90% SLH-DSA here.

- 24 Rounds, 1600-bit state. Relatively slow in software but very fast in
hardware (but rather large area.) A lot of XORs and NOT-AND gates.

Theta: Linear Mixing 6(A)

Rho: Word Rotations p(A)

Pi: Word Permutation 11(A)

Chi: Nonlinear "S-Boxes" x(A)

Ce1 171 | |

|1 +0

>>>
28

T*COeL
:> \)Q(\ :,|> S>> >>> | ([>>> | [>>> | >>>

61

>>>
23

>>>
46

S>> [>>> >>>
63 2 36

>>> | [>>> [>>
20 58 9

54 21 39

>>> | [>>> | | >>>
19 49 43

>>> | [>>> | >>>
62 3 8

>>>
37

>>>
44

25

>>>
56

>>>
50

VL,

11

77 :;r;/ryjj

TA\Y
AR
i

135—19

/I”>\ |

11— 17

i

8 — 1315 —21

HW Cost: Two XORs/bit, routing.

HW Cost: Just wires.

HW Cost: Just wires.

HW Cost: One ANDN / bit, routing.

Main PQC TG Proposal: A Keccak Instruction

Keccak state is little awkward to fit into vector architecture:
- Seemingly VLEN 2 256 is required (the max LMUL value is 8.)

- Element EEW = 64. Element group EGS = 32, LMUL = 2048 / VLEN:
- VLEN = 256: LMUL = 8: A group of 8 vector registers of 256 bits.
- VLEN =512: LMUL = 4: A group of 4 vector registers of 512 bits.

Multi-round instruction (due to complexity of accessing 25 words):
vkeccak.vi vd, vs2, imm # imm = 5-bit num rounds
Computes 24 rounds of Keccak-p[1600,24] permutation with imm=24.

(Ed. note: Sorry about jargon & acronyms, this slide was made for RISC-V Summit!!)

Optimizing Kyber & Dilithium with Vector/SIMD

Application-class RISC-V processors have vector instructions available, similarly
to AVX SIMD on Intel and NEON, SVA on ARM architectures.

We optimized Kyber and Dilithium with RISC-V Vector Intrinsics / CLANG 20.

Benchmarked with SpacemiT X60 (VLEN=256) & C908 (VLEN=128) silicon:

Vector really helps (~5x speedup) with arithmetic parts (NTT) and
somewhat with the bit packing and sampling too.

Vector does not help SHA3/SHAKE much -- that becomes a bottleneck.

Impact: Kyber-768 (ML-KEM) Key Exchange

ey | Encaps) Decaps)|TOTAL Speecup

RV64GC 663,067 815,357 1,006,469 2,484,893 1.00
RV64GCV+ZBB 546,631 685201 858,508 2,090,340 1.19
w. Intrinsics 223,400 239,714 262,241 725,355 3.43

w. Keccak Insn 49,363 61,632 84,120 195,115 12.74

Clang 20.0.0git -O3 with —-march=rv64gc / rv64gcv_zbb zvI256b
Lines 1-3 uses C language reference Keccak f1600; 4,038 instructions.
Line 4 uses SPIKE 1 cycle Keccak. In real-life in hardware ~100 cycles.

Keccak Instruction: Microarchitecture Notes

In "Marian" we extended the PULP Ara2 seaueNcer o
vector unit with Zvk crypto instructions. - vloil """"" i
! Instruction Info | p(evrgg;ﬂA °P‘(’\’2)")°'B OP;*\;E:;‘C
| od !
We used a 256-bit "operand collector") —eweimme—
because of the VRF structure. VRFis split | |] |
into lanes. Each lane only has 64-bit — -
segments of each reg; need to combine. | | ., — |
E : [AEs | [sHA2] |G(¥M| [sm3] [sma | %
Keccak would need a 1600-bit collector. S I R s ”J
But would probably still be worthwhile! | __ .
S ,,
L[mmeedewe -
https://github.com/soc-hub-fi/Marian . J

https://github.com/soc-hub-fi/Marian

PQC Support: RISC-V PQC TG Recommendation

Keccak instruction seems like a winner, giving significant speedups for all PQC
algorithms. NTT can also be considered, but RVV already helps a lot with that.

This instruction is replacing thousands of instructions. Core f1600 permutation is 24
cycles. Together with operand collection + writeback can still be under 100.

Hardware note: Permutation alone is about 40kGE + "operand collector” logic.

PQC speedup of Keccak Insn. on RVV ~2-4x. Quite easy to integrate into software.

Microarchitecturally awkward but saves device battery / SSS in data centre.

Timing Attacks — ISA Support

Some Greatest Hits (in asymmetric crypto TA) Along the Years:

P.C. Kocher: "Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems." (CRYPTO 1996. Target: RSAREF 2.0 running on MS-DOS.)

D. Brumley and D. Boneh: "Remote timing attacks are practical.”

(USENIX Security 2003. OpenSSL RSA remote key recovery, CVE-2003-0147.)

B. Brumley and N. Toveri: "Remote Timing Attacks Are Still Practical.”

(ESORICS 2011. OpenSSL ECDSA remote key recovery, CVE-2011-1945.)

Q. Guo, T. Johansson. A. Nilsson, "A key-recovery timing attack on post-quantum
primitives using the Fujisaki-Okamoto transformation and its application on
FrodoKEM." (Crypto 2020, PC Oracle, demoed against a claimed const-time impl.)

Every generation gets to learn the special implementation tricks!

Basic Sources of Timing Leaks
(That are avoidable with careful programming)

1. Secret-controlled branches and loops:

1f <secret> then { delayl(); } else { delay2(), }
2. Memory accesses (cache timing attacks). Can be a load or store.

ct = SBox[pt * key]; // observe latency with different inputs.
3. Arithmetic operations whose processing time just depends on inputs

X =vV % q; // division and remainder ops are rarely constant-time.

When Hiring a (Post-Quantum) Crypto Dev..

Constant-time coding / algorithm knowledge is fundamental

Have a “library” of solid CT replacements for memcmp () and similar functions.

Identify conditionals, transform to straight-line code using Boolean operations? (=
X =s ?2a :b;vs.s. x=Db " ((-(s &1)) & (a ~ b));

Table-lookups: Bit-slicing (entire thing as a Boolean circuit), “full scan / collect”.

No division instructions in modular arithmetic (use Montgomery, Barrett etc.)

Know how to test with symbolic execution (e.g. valgrind) or on instruction level..

.. etc .. these are core crypto programming skills!

Analyze source code, Verify Implementation
RISC-V “Data Independent Execution Latency” (DIEL)

One can use e.g. valgrind or other static or dynamic analysis tools to validate
constant-time properties. (Secret variables need to be “annotated.”)

Compilers don’t know about “constant time” — need to verify machine code.
Note: Constant-timeness’ of Intel and ARM: mostly from experiments.

vy RISC-V°

RISC-V CETG codified timing as the Zkt extension for scalar, and the Zvkt DIEL
(Data Independent Extension Latency) instruction list for vector.
Included in the manual: https://github.com/riscv/riscv-isa-manual/releases

https://github.com/riscv/riscv-isa-manual/releases

Part 2: The “Invisible” Chip Cryptography

- Vendors (Intel, AMD, Apple, Google, NVIDIA, Qualcomm, Google, ... but also
RISC-V system makers) need to be able to update their system chips.

- This creates incredible supply chain risks — think of a rootkit or malware in a
microcode update to an Intel CPU. This is completely invisible to OS & users.

- Ecosystems (Android, Windows, Apple OS) and device vendors want to
protect their devices against “jailbreaking” and unauthorized modification.

- Consequence: Much more serious measures are taken to protect the chips
and devices themselves than any user application running on them. £

21

Evaluating Attacks against PQC Modules

High assurance level (EUCC: equivalent to
AVA VAN.3 or above) is a requirement for
Root of Trust IP, Smart Cards, Secure
elements, many types of loT (SESIP).

While FIPS testing focuses on “checklist
compliance”, AVA_VAN checks real-life
security via a “penetration test.”

1ISO 17825 / FIPS 140-3 “non-invasive”
leakage assessment ignores many practical
physical attacks (e.g. FIA).

“Evaluators must have knowledge and
experience of [..] side channel attacks (SCA)
such as Timing Analysis,

Machine Learning based SCA,

Simple Power Analysis (SPA),

Differential Power Analysis (DPA),
Differential EM radiation Analysis (DEMA),
Template Attacks (TA),

fault injection attacks such as DFA [..]”

— EUCC v1.1.1 (also SOG-IS Documents)

Protection Profiles for Chip Security

AVA_VAN.3+ is a common requirement for Root of Trust and Security IC products.

We assume that this will not change (much) with Post-Quantum Cryptography.

[JSADENO11] “SESIP Profile for PSA Certified ™ Level 3”
Root of Trust (PSA-RoT): 35 person-days of AVA_VAN.3 activities.

[PP-0084] “Security IC Platform Protection Profile”
EAL 4 augmented by AVA_VAN.5 and ALC_DVS.2

[PP-0117] “Secure Sub-System in System-on-Chip (3S in SoC)”
EAL 4 augmented by ATE_DPT.2, AVA_VAN.5, ALC_DVS.2 and ALC_FLR.2

23

(From PP-0117)

3.2 Threats

The threats described in this section are applicable to the base Protection Profile. For threats related
to functional extensions see Chapter 7.

The following figure describes the attacks that are applicable to the TOE. The interactions related to
the attacks are marked with red arrows.

Exposure of Energy, e.g. Light, Particles 1 2 Electrical Stimulation by Probing

3 Inspection and Reverse-engineering

Electrical stimulation, 4 Physical Manipulation

e.g. Glitches

Contact Surface

10

ISecurity] Operationa
[CRYPTO
RNG Control Control

! ! !]

Resource Management and Bus System

!

Any kind of modified
communication, download O (gEmm——
or other attack via this interface

Any possible interaction with
5 the Debug/test interface trying
to activate and misuse the

d
Electrical measurement, 8 s interface
e.g. Power, Timing
Radiation, e.g. Electromagnetic, Light 7 6 Measurement using probing techniques

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/ReportePP/pp0117V2b pdf.pdf

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/ReportePP/pp0117V2b_pdf.pdf

AVA VAN: Common Criteria Vulnerability Analysis

Attack Potential is evaluated with a
score-based system that roughly maps to
the “cost of attack.” (think S or €)

Considers attack Identification +
exploitation, with many factors:

- Elapsed time (hours—months)

- Attacker Expertise (multiple)

- Knowledge (how restricted)

- Access to the TOE (samples)

- Equipment (common/bespoke)

IH

(“Application of Attack Potential” docs.)

AVA _VAN.1 Vulnerability Survey
- TOE resistance against BASIC Attack Potential (0-15)

AVA_VAN.2 (Unstructured) Vuln. Analysis
- TOE resistance against BASIC Attack Potential (16-20)

AVA_VAN.3 Focused (Unstructured) Vuln. Analysis
- TOE resistance against ENHANCED-BASIC AP (21-24)

AVA _VAN.4 Methodical Vuln. Analysis
- TOE resistance against MODERATE AP (25-30)

AVA _VAN.5 Advanced Methodical Vuln. Analysis
- TOE resistance against HIGH Attack Potential (31-)

Attack Potential: Example Calculation

AP Component Identification Exploitation
Elapsed time 2 (< one week) 6 (< one month)
Expertise 5 (expert) 4 (expert)
Knowledge of the TOE 4 (sensitive) O (public)
Access to the TOE O (<10 samples) O (<10 samples)
Equipment 3 (specialized) 4 (specialized)
Open Samples O (public) O (public)

Total 28 (AVA_VAN.4 [/ moderate AP range)

SOG-IS: “Application of Attack Potential to Smartcards and Similar Devices”

Inherited Application Requirements
Platform Security / RoT, Smart Cards, Authentication Tokens, etc

--
. ~ . L]
000000

Generic Secure Element in -2020 Generic Secure Element in 2025-

Control Unit Big Integer Control Unit Rings / NTT
ARM MCU RSA /ECC RISC-V MCU Poly x-1
Simple DMA SHA-2 Bit vector ops || SHA3/SHAKE
basically copy || HMAC + Hash AZ2B/B2A etc Keccak f1600
DRBG "TRNG" Fast Random ES + RBGs
SP 800-90A AlS-20/31 for masking SP 800-90ABC

——

oooooo

..

Side-Channel and Fault Attacks

Different Applications have Different Requirements

Logical or Timing Attacks
Non-invasive Remote
Attacks Power (SPA/DPA)
Physical
Proximity Electromagnetic
Invasive (SEMA/DEMA)
Attacks Invasive

Physical Fault Injection (Fl)

