Making the Case for a Keccak Instruction
Post-Quantum Cryptography on RVV

Markku-Juhani O. Saarinen, Tampere University
PQC Task Group Chair
<markku-juhani.saarinen@tuni.fi>

RISC-V Summit North America
Santa Clara -- October 23, 2024

v RISC-V°

Cryptography Extensions ("K")

Scalar Crypto (Ratified 2021): AES, SHA2, SM3, SM4, CMUL (GCM) with
32- and 64-bit scalar registers. + "Constant time" & Entropy Source.

Vector Crypto (Ratified 2023): AES, SHA2, SM3, SM4, GCM with vector
registers: Make bulk crypto even faster with parallel AES-GCM etc.

-> many of these now In Linux Kernel, OpenSSL, going into Android Platform

Being worked on:

High Assurance Crypto TG (From late 2023): "Full-rounds" AES allowing
emission/power side-channel security. Key management features.

Post-Quantum Crypto TG (From late 2023): What can we do to assist standard
PQC algs (notably FIPS 203,204,205 - Kyber, Dilithium, SPHINCS+) ?

You all have heard about this --

Most online stuff is protected with TLS:
- Asymmetric key exchange for session keys.
- Authentication with certificates / signatures.

These now use cryptography breakable in
polynomial time with a quantum computer. S e AR el

IN SECONDS .M Ll e “‘“;‘ IS HERE
THATUSED TO 144/ Yaiem R
TAKE YEARS

Post-Quantum: Ongoing transition to use newer
algorithms designed to resist quantum attacks.

August 13, 2024: Standards Came into Effect

Kyber (FIPS 203, ML-KEM) -- Key Establishment ‘ ‘ ‘
Replace or augment RSA, ECDH (e.g. X25519) ‘ ‘ ‘
for message encryption, key exchange (TLS).

Dilithium (FIPS 204, ML-DSA) -- Digital Signature 5 ‘ : ‘ . ‘ :
Replace or augment RSA, ECDSA for Data or T H : U M

End-point Authentication, PKI Certificates.
https://csrc.nist.geov/news/2024/postqguantum-cryptography-fips-approved

https://csrc.nist.gov/news/2024/postquantum-cryptography-fips-approved​

RWPQC / Toronto -- March 24, 2024. Picture from Bas Westerbaan.

How bag =xtra hash can be?

asha Frolov and Rafael Misoczki

e Key exchange is a (very) commonly performed operation at Meta

o Currently, “0.05% of CPU cycles in Meta’s data centers are spent doing X25519 key exchange

o We hope this data point is useful for making cost estimates while defining PQC standards specs

e This med

o Deploying post-quantum key exchange has a non-negligible capacity cost

o Apparently innocuous steps can cost hundreds of thousands or even millions of dollars a year

m e.g. extra hashing steps, like hashing randomness or hashing parts of the transcript, which are

being discussed as part of finalizing Kyber specification

s Even if an extra step does not affect latency, the extra power usage/consumption of shared

resources on highly parallel servers still has costs

Feedback? Write to sashafrolov@meta.com or rafam@meta.com.

Compute Impact (focusing on TLS with RVV)

Boot process can use Dilithium, but hash-based signatures XMSS/LMS
(SP 800-208) or SPHINCS+ (FIPS 205) are also often recommended.
These are pretty slow algorithms, especially for signing. Not in TLS.

TLS (or QUIC, IPSEC, SSH) key exchange latency affects user experience
and overall power profile. Both Kyber and Dilithium will be used here.

Good news: These lattice-based PQC algorithms are usually faster or
roughly same speed as classical crypto. But any speedup is welcome.

Kyber & Dilithium on RVV

Optimized Kyber and Dilithium with RISC-V Vector Intrinsics / CLANG 20.
Benchmarked with SpacemiT X60 (VLEN=256), C908 (VLEN=128) silicon.

Vector really helps (~5x speedup) with arithmetic parts (NTT) and
somewhat with the bit packing and sampling too.

Vector does not help SHA3/SHAKE much -- that becomes a bottleneck.

Another implementation:

Jipeng Zhang et al, "Optimized Software Implementation of Keccak, Kyber,
and Dilithium on RV{32,64}IM{B}{V}." TCHES 2025/01.

Keccak f1600: Core of SHA3/SHAKE

SHA3 and SHAKE (FIPS 202) are "modes" of the 25x64=1600-bit
Keccak permutation. 60-80% of Kyber, Dilithium cycles spent here.

24 Rounds. The rounds have an incredibly short critical path in
hardware (fast hw!), but vectorization is disappointing (<2x scalar?)

Theta: Linear Mixing 6(A) Rho: Word Rotations p(A) Pi: Word Permutation 1m(A) Chi: Nonlinear "S-Boxes" X(A)

VAT
e ee—

>>> >>> >>> >>> >>>

\)OV\ 28 20 (58 9 | 44 / ? | ///|
—> Tl 2| 2| 2| | e = @ /13—19 :>@ﬂ% —>
61 54 21 39 25 7
/| /\ |
\)O(\ >>> | (>>> | (>>> | [>>> | [>>> 11 - 17 @
23 19 49 43 56 \
>>> >>> >>> >>> >>> : ﬁ

HW Cost: Two XORs/bit, routing. HW Cost: Just wires. HW Cost: Just wires. HW Cost: One ANDN / bit, routing.

Kyber-768 (ML-KEM) Key Exchange

T koyGen(| () Deceps0 _TOTAL Speup

RV64GC 663,067 815,357 1,006,469 2,484,893 1.00
RV64GCV+ZBB 546,631 685,201 858,508 2,090,340 1.19
w. Intrinsics 223,400 239,714 262,241 725,355 3.43
w. Keccak Insn 49,363 61,632 84,120 195,115 12.74

Clang 20.0.0git -O3 with —march=rv64gc / rv64gcv_zbb zvI256b
Lines 1-3 uses C language reference Keccak f1600; 4,038 instructions.
Line 4 uses SPIKE 1 cycle Keccak. In real-life in hardware ~100 cycles.

Keccak Instruction: Main PQC TG Proposal

Keccak state is awkward to fit into vector registers and architecture:
Seemingly VLEN > 256 is required (the max LMUL value is 8.)

Element EEW = 64. Element group EGS = 32, LMUL = 2048 / VLEN:
VLEN = 256: LMUL = 8: A group of 8 vector registers of 256 bits.
VLEN = 512: LMUL = 4: A group of 4 vector registers of 512 bits.

Multi-round instruction (due to complexity of accessing 25 words):
vkeccak.vi vd, vs2, imm # imm = 5-bit num rounds

Computes 24 rounds of Keccak-p[1600,24] permutation with imm=24.

Microarchitecture Notes

| s
Elnstruction Info : OPg;g:;’A Opt(a\r,alnjn)dB Op(evrgl;;ic m
In "Marian" we extended the PULP Ara2 =
vector unit with Zvk crypto instructions. T
! |
1 & l e }
We used a 256-bit "operand collector” IR ! '
because of the VRF structure. VRFissplit = 77 >]
into lanes. Each lane only has 64-bit))) [(o] (] -
segments of each reg; need to combine. A "
e
: v | Y
Keccak would need a 1600-bit collector. 1 | = .
But would probably still be worthwhile! | — WRITEBACKLo‘?c)55
e e ———ss——

Consider a combined Shuffle / Keccak unit?

Vector 1.0 implementors already have to consider instructions such as
"vrgather" that will permute bytes across LMUL*VLEN bits.

Example: VLEN=256, LMUL=8 vrgather permutes 2048 bits / 256 bytes.
Post-Quantum Crypto uses a lot of NTT; need fast butterflies (like FFT.)

Available silicon (X60 core, VLEN=256) requires 4*(LMUL)? cycles:
__riscv_vrgather_vv_u8ml(): 4 cycles (LMUL=1)
__riscv_vrgather_vv_u8m2(): 16 cycles (LMUL=2)
__riscv_vrgather_vv_u8m4(): 64 cycles (LMUL=4)
__riscv_vrgather_vv_u8m8(): 256 cycles (LMUL=8)

Keccak could be in a fast shuffle/slide unit with large holding registers.

SPHINCS™: Impact on FIPS 205 SLH-DSA

FIPS 205 SLH-DSA "Stateless Hash-Based Digital Signature Standard"
(a.k.a. SPHINCS*) has two parameter instantiations, SHA2 and SHAKE.

SLH-DSA-SHAKE is made at least 10 times faster by vkeccak.vi.

Note that holding the Keccak state in vector registers allows "padding
template" forming and Winternitz iteration (https://ia.cr/2024/367).

Similar speedup for SHAKE variants of LMS & XMSS in SP 800-208.

https://ia.cr/2024/367

Conclusions: PQC TG Recommendation

Keccak instruction seems like a winner, giving significant speedups for all PQC
algorithms. NTT can also be considered, but RVV already helps a lot with that.

This 1 instruction is replacing thousands of instructions. Core f1600 permutation is
24 cycles. Together with operand collection + writeback can still be under 100.

Hardware note: Permutation alone is about 40kGE + "operand collector" logic.

PQC speedup of Keccak Insn. on RVV ~2-3x. Quite easy to integrate into software.

Microarchitecturally awkward but saves device battery / $SS in data centre.

	Slide 1: Making the Case for a Keccak Instruction Post-Quantum Cryptography on RVV Markku-Juhani O. Saarinen, Tampere University PQC Task Group Chair <markku-juhani.saarinen@tuni.fi>
	Slide 2: Cryptography Extensions ("K")
	Slide 3: You all have heard about this --
	Slide 4: August 13, 2024: Standards Came into Effect
	Slide 5
	Slide 6: Compute Impact (focusing on TLS with RVV)
	Slide 7: Kyber & Dilithium on RVV
	Slide 8: Keccak f1600: Core of SHA3/SHAKE
	Slide 9: Kyber-768 (ML-KEM) Key Exchange
	Slide 10: Keccak Instruction: Main PQC TG Proposal
	Slide 11: Microarchitecture Notes
	Slide 12: Consider a combined Shuffle / Keccak unit?
	Slide 13: SPHINCS+: Impact on FIPS 205 SLH-DSA
	Slide 14: Conclusions: PQC TG Recommendation

