
Making the Case for a Keccak Instruction
Post-Quantum Cryptography on RVV

Markku-Juhani O. Saarinen, Tampere University
PQC Task Group Chair
<markku-juhani.saarinen@tuni.fi>

RISC-V Summit North America
Santa Clara -- October 23, 2024

Cryptography Extensions ("K")

Done: Scalar Crypto (Ratified 2021): AES, SHA2, SM3, SM4, CMUL (GCM) with
32- and 64-bit scalar registers. + "Constant time" & Entropy Source.

Done: Vector Crypto (Ratified 2023): AES, SHA2, SM3, SM4, GCM with vector
registers: Make bulk crypto even faster with parallel AES-GCM etc.

-> many of these now In Linux Kernel, OpenSSL, going into Android Platform

Being worked on:

High Assurance Crypto TG (From late 2023): "Full-rounds" AES allowing
emission/power side-channel security. Key management features.

Post-Quantum Crypto TG (From late 2023): What can we do to assist standard
PQC algs (notably FIPS 203,204,205 - Kyber, Dilithium, SPHINCS+) ?

You all have heard about this --

Most online stuff is protected with TLS:

- Asymmetric key exchange for session keys.

- Authentication with certificates / signatures.

These now use cryptography breakable in

polynomial time with a quantum computer.

Post-Quantum: Ongoing transition to use newer

algorithms designed to resist quantum attacks.

August 13, 2024: Standards Came into Effect

Kyber (FIPS 203, ML-KEM) -- Key Establishment

Replace or augment RSA, ECDH (e.g. X25519)

for message encryption, key exchange (TLS).

Dilithium (FIPS 204, ML-DSA) -- Digital Signature

Replace or augment RSA, ECDSA for Data or

End-point Authentication, PKI Certificates.

https://csrc.nist.gov/news/2024/postquantum-cryptography-fips-approved

https://csrc.nist.gov/news/2024/postquantum-cryptography-fips-approved​

RWPQC / Toronto -- March 24, 2024. Picture from Bas Westerbaan.

Compute Impact (focusing on TLS with RVV)

- Boot process can use Dilithium, but hash-based signatures XMSS/LMS
(SP 800-208) or SPHINCS+ (FIPS 205) are also often recommended.
These are pretty slow algorithms, especially for signing. Not in TLS.

- TLS (or QUIC, IPSEC, SSH) key exchange latency affects user experience
and overall power profile. Both Kyber and Dilithium will be used here.

- Good news: These lattice-based PQC algorithms are usually faster or
roughly same speed as classical crypto. But any speedup is welcome.

Kyber & Dilithium on RVV

Optimized Kyber and Dilithium with RISC-V Vector Intrinsics / CLANG 20.

Benchmarked with SpacemiT X60 (VLEN=256), C908 (VLEN=128) silicon.

- Vector really helps (~5x speedup) with arithmetic parts (NTT) and
somewhat with the bit packing and sampling too.

- Vector does not help SHA3/SHAKE much -- that becomes a bottleneck.

Another implementation:

Jipeng Zhang et al, "Optimized Software Implementation of Keccak, Kyber,
and Dilithium on RV{32,64}IM{B}{V}." TCHES 2025/01.

Keccak f1600: Core of SHA3/SHAKE

- SHA3 and SHAKE (FIPS 202) are "modes" of the 25×64=1600-bit
Keccak permutation. 60-80% of Kyber, Dilithium cycles spent here.

- 24 Rounds. The rounds have an incredibly short critical path in
hardware (fast hw!), but vectorization is disappointing (<2× scalar?)

Kyber-768 (ML-KEM) Key Exchange

Clang 20.0.0git -O3 with –march=rv64gc / rv64gcv_zbb_zvl256b

Lines 1-3 uses C language reference Keccak f1600; 4,038 instructions.

Line 4 uses SPIKE 1 cycle Keccak. In real-life in hardware ~100 cycles.

KeyGen() Encaps() Decaps() TOTAL Speedup

RV64GC 663,067 815,357 1,006,469 2,484,893 1.00

RV64GCV+ZBB 546,631 685,201 858,508 2,090,340 1.19

w. Intrinsics 223,400 239,714 262,241 725,355 3.43

w. Keccak Insn 49,363 61,632 84,120 195,115 12.74

Keccak Instruction: Main PQC TG Proposal

Keccak state is awkward to fit into vector registers and architecture:

- Seemingly VLEN ≥ 256 is required (the max LMUL value is 8.)

- Element EEW = 64. Element group EGS = 32, LMUL = 2048 / VLEN:

- VLEN = 256: LMUL = 8: A group of 8 vector registers of 256 bits.

- VLEN = 512: LMUL = 4: A group of 4 vector registers of 512 bits.

Multi-round instruction (due to complexity of accessing 25 words):

vkeccak.vi vd, vs2, imm # imm = 5-bit num rounds

Computes 24 rounds of Keccak-p[1600,24] permutation with imm=24.

Microarchitecture Notes

In "Marian" we extended the PULP Ara2
vector unit with Zvk crypto instructions.

We used a 256-bit "operand collector"
because of the VRF structure. VRF is split
into lanes. Each lane only has 64-bit
segments of each reg; need to combine.

Keccak would need a 1600-bit collector.

But would probably still be worthwhile!

Consider a combined Shuffle / Keccak unit?

- Vector 1.0 implementors already have to consider instructions such as
"vrgather" that will permute bytes across LMUL*VLEN bits.

- Example: VLEN=256, LMUL=8 vrgather permutes 2048 bits / 256 bytes.

- Post-Quantum Crypto uses a lot of NTT; need fast butterflies (like FFT.)

- Available silicon (X60 core, VLEN=256) requires 4*(LMUL)2 cycles:
__riscv_vrgather_vv_u8m1(): 4 cycles (LMUL=1)

__riscv_vrgather_vv_u8m2(): 16 cycles (LMUL=2)

__riscv_vrgather_vv_u8m4(): 64 cycles (LMUL=4)

__riscv_vrgather_vv_u8m8(): 256 cycles (LMUL=8)

- Keccak could be in a fast shuffle/slide unit with large holding registers.

SPHINCS+: Impact on FIPS 205 SLH-DSA

FIPS 205 SLH-DSA "Stateless Hash-Based Digital Signature Standard"
(a.k.a. SPHINCS+) has two parameter instantiations, SHA2 and SHAKE.

SLH-DSA-SHAKE is made at least 10 times faster by vkeccak.vi.

Note that holding the Keccak state in vector registers allows "padding
template" forming and Winternitz iteration (https://ia.cr/2024/367).

Similar speedup for SHAKE variants of LMS & XMSS in SP 800-208.

https://ia.cr/2024/367

Conclusions: PQC TG Recommendation

Keccak instruction seems like a winner, giving significant speedups for all PQC
algorithms. NTT can also be considered, but RVV already helps a lot with that.

This 1 instruction is replacing thousands of instructions. Core f1600 permutation is
24 cycles. Together with operand collection + writeback can still be under 100.

Hardware note: Permutation alone is about 40kGE + "operand collector" logic.

PQC speedup of Keccak Insn. on RVV ~2-3x. Quite easy to integrate into software.

Microarchitecturally awkward but saves device battery / $$$ in data centre.

	Slide 1: Making the Case for a Keccak Instruction Post-Quantum Cryptography on RVV Markku-Juhani O. Saarinen, Tampere University PQC Task Group Chair <markku-juhani.saarinen@tuni.fi>
	Slide 2: Cryptography Extensions ("K")
	Slide 3: You all have heard about this --
	Slide 4: August 13, 2024: Standards Came into Effect
	Slide 5
	Slide 6: Compute Impact (focusing on TLS with RVV)
	Slide 7: Kyber & Dilithium on RVV
	Slide 8: Keccak f1600: Core of SHA3/SHAKE
	Slide 9: Kyber-768 (ML-KEM) Key Exchange
	Slide 10: Keccak Instruction: Main PQC TG Proposal
	Slide 11: Microarchitecture Notes
	Slide 12: Consider a combined Shuffle / Keccak unit?
	Slide 13: SPHINCS+: Impact on FIPS 205 SLH-DSA
	Slide 14: Conclusions: PQC TG Recommendation

