
“A wider variant of AES”
Rijndael-256 and RISC-V Crypto ISA
Markku-Juhani O. Saarinen
<markku-juhani.saarinen@tuni.fi>

January 16, 2025
RISC-V Cryptography SIG



2

https://csrc.nist.gov/pubs/sp/800/197/iprd

https://csrc.nist.gov/pubs/sp/800/197/iprd


Rijndael-256 Specs & Implementation

- The original 1990s Rijndael proposal allowed block 
size and key to independently be { 128, 192, 256 } 
bits.

- The non-AES variants were largely ignored for over 20 
years. Appendices B.3 and C of the Rijndael book (👉) 
has some test vectors and reference code for them. 

- I used these to verify that my RISC-V implementation 
with current Zvkned should be correct. See:

https://github.com/mjosaarinen/rij256-rv/

3

https://github.com/mjosaarinen/rij256-rv/


Rijndael-256 vs AES-256

- Rijndael-256 has 14 rounds and 14+1=15 round keys (same as AES-256).

- The key schedule of Rijndael-256 is the same as AES-256, except that more 
round constants are used. For a given key K, AES-256 round keys 1..14 match 
Rijndael-256 expanded key material for rounds 1..7.

Only Rijndael-256 ShiftRows() differs from 2 × AES parallel round steps:

- SubBytes():  32 S-Box byte substitutions, independent of each others.
- ShiftRows():  4 rows of 8 bytes, rotated left by { 0, 1, 3, 4 } positions.
- MixColumns():  8 columns (32-bit chunks). Same linear operation as in AES.
- AddRoundKey(): A 32 byte-XOR with the round kys.

4



5

This is fine for Rijndael-256 except that we now need more round constants: 



Only ShiftRows() mixes 128-bit “lanes” (1) 

(  0  4  8 12 16 20 24 28 ) Input: Bytes 0,1,2,..., 31.

(  1  5  9 13 17 21 25 29 ) Bytes are ordered “column first!”

(  2  6 10 14 18 22 26 30 )

(  3  7 11 15 19 23 27 31 )

(  0  4  8 12 16 20 24 28 ) Rijndael-256 ShiftRows():

(  5  9 13 17 21 25 29  1 ) Entire row rotated left by 1

( 14 18 22 26 30  2  6 10 ) Entire row rotated left by 3

( 19 23 27 31  3  7 11 15 ) Entire row rotated left by 4

6



Only ShiftRows() mixes 128-bit “lanes” (2)

(  0  4  8 12|16 20 24 28 ) 2 × parallel AES  ShiftRows():

(  5  9 13  1|21 25 29 17 ) Half-rows rotated left by 1

( 10 14  2  6|26 30 18 22 ) Half-rows rotated left by 2

( 15  3  7 11|31 19 23 27 ) Half-rows rotated left by 3

(  0  4  8 12 16 20 24 28 ) Rijndael-256 ShiftRows():

(  5  9 13 17 21 25 29  1 ) Entire row rotated left by 1

( 14 18 22 26 30  2  6 10 ) Entire row rotated left by 3

( 19 23 27 31  3  7 11 15 ) Entire row rotated left by 4

7



Zvkned: Each round vrgather.vv and vaes__.vv

- Before each round, permutate 32 bytes with vrgather.vv, indices:
{ 0,  17, 22, 23, 4,  5,  26, 27, 8,  9,  14, 31, 12, 13, 18, 19,

   16, 1,  6,  7,  20, 21, 10, 11, 24, 25, 30, 15, 28, 29, 2,  3  };

- “Undoes” 2 × parallel AES-128 ShiftRows(), then the Rijndael-256 ShiftRows. 

- vaesem.vv:  SubBytes() ➤ ShiftRows() ➤ MixColumns() ➤ AddRoundKey()

- I’ve implemented and tested this; having the same round keys in encryption 
and decryption still works (no need to shuffle round keys.)

https://github.com/mjosaarinen/rij256-rv/

8

https://github.com/mjosaarinen/rij256-rv/


Annoying SEW toggle required each round

vsetvli    zero, a4, e8, m1, ta, ma # AVL=32, SEW=8

vrgather.vv v25, v24, v8 # shuffle bytes

vsetivli zero, 8, e32, m1, ta, ma # AVL=8, SEW=32

vaesem.vv v25, v10 # 2×128b AES

vsetvli    zero, a4, e8, m1, ta, ma # AVL=32, SEW=8

vrgather.vv v24, v25, v8 # shuffle bytes

vsetivli zero, 8, e32, m1, ta, ma # AVL=8, SEW=32

vaesem.vv v24, v11 # 2×128b AES

9



Encrypt and decrypt 1024 bytes this way

=== AES-256 ===

aes256_exp_key():  ins=    58  cyc=  ?

aes256_enc(1024):  ins=   775  cyc=  ?

aes256_dec(1024):  ins=   775  cyc=  ?

=== Rijndael-256 ===

rij256_exp_key():  ins=   123  cyc=  ?

rij256_enc(1024):  ins=  2059  cyc=  ?

rij256_dec(1024):  ins=  2059  cyc=  ?

10



This is already “constant time”

The vrgather.vv instruction is “half constant-time” in the sense that under Zvkt 
the latency does not depend on the data being permuted.

However latency can depend on the permutation, but that is constant.

11



Some Proposals for Consideration

1. With SEW=64 the AES instructions become Rijndael-256 Instructions.
vaesef.[vv,vs], vaesem.[vv,vs], vaesdf.[vv,vs], vaesdm.[vv,vs], vaeskf2.vi

2. Allow the same AES instructions with SEW=8, eliminating SEW toggling.

3. Modify vaeskf2.vi definition to support additional round constants.

4. Insert a hint into vrgather instruction for the special Rijndael-256 
encryption and decryption permutations and “hardwire” them.

12


