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https://csrc.nist.gov/pubs/sp/800/197/iprd

https://csrc.nist.gov/pubs/sp/800/197/iprd


Rijndael-256 Specs & Implementation

- The original 1990s Rijndael proposal allowed block 
size and key to independently be { 128, 192, 256 } 
bits.

- The non-AES variants were largely ignored for over 20 
years. Appendices B.3 and C of the Rijndael book (👉) 
has some test vectors and reference code for them. 

- I used these to verify that my RISC-V implementation 
with current Zvkned should be correct. See:

https://github.com/mjosaarinen/rij256-rv/
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https://github.com/mjosaarinen/rij256-rv/


Rijndael-256 vs AES-256

- Rijndael-256 has 14 rounds and 14+1=15 round keys (same as AES-256).

- The key schedule of Rijndael-256 is the same as AES-256, except that more 
round constants are used. For a given key K, AES-256 round keys 1..14 match 
Rijndael-256 expanded key material for rounds 1..7.

Only Rijndael-256 ShiftRows() differs from 2 × AES parallel round steps:

- SubBytes():  32 S-Box byte substitutions, independent of each others.
- ShiftRows():  4 rows of 8 bytes, rotated left by { 0, 1, 3, 4 } positions.
- MixColumns():  8 columns (32-bit chunks). Same linear operation as in AES.
- AddRoundKey(): A 32 byte-XOR with the round kys.
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This is fine for Rijndael-256 except that we now need more round constants: 



Only ShiftRows() mixes 128-bit “lanes” (1) 

(  0  4  8 12 16 20 24 28 ) Input: Bytes 0,1,2,..., 31.

(  1  5  9 13 17 21 25 29 ) Bytes are ordered “column first!”

(  2  6 10 14 18 22 26 30 )

(  3  7 11 15 19 23 27 31 )

(  0  4  8 12 16 20 24 28 ) Rijndael-256 ShiftRows():

(  5  9 13 17 21 25 29  1 ) Entire row rotated left by 1

( 14 18 22 26 30  2  6 10 ) Entire row rotated left by 3

( 19 23 27 31  3  7 11 15 ) Entire row rotated left by 4
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Only ShiftRows() mixes 128-bit “lanes” (2)

(  0  4  8 12|16 20 24 28 ) 2 × parallel AES  ShiftRows():

(  5  9 13  1|21 25 29 17 ) Half-rows rotated left by 1

( 10 14  2  6|26 30 18 22 ) Half-rows rotated left by 2

( 15  3  7 11|31 19 23 27 ) Half-rows rotated left by 3

(  0  4  8 12 16 20 24 28 ) Rijndael-256 ShiftRows():

(  5  9 13 17 21 25 29  1 ) Entire row rotated left by 1

( 14 18 22 26 30  2  6 10 ) Entire row rotated left by 3

( 19 23 27 31  3  7 11 15 ) Entire row rotated left by 4
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Zvkned: Each round vrgather.vv and vaes__.vv

- Before each round, permutate 32 bytes with vrgather.vv, indices:
{ 0,  17, 22, 23, 4,  5,  26, 27, 8,  9,  14, 31, 12, 13, 18, 19,

   16, 1,  6,  7,  20, 21, 10, 11, 24, 25, 30, 15, 28, 29, 2,  3  };

- “Undoes” 2 × parallel AES-128 ShiftRows(), then the Rijndael-256 ShiftRows. 

- vaesem.vv:  SubBytes() ➤ ShiftRows() ➤ MixColumns() ➤ AddRoundKey()

- I’ve implemented and tested this; having the same round keys in encryption 
and decryption still works (no need to shuffle round keys.)

https://github.com/mjosaarinen/rij256-rv/
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Annoying SEW toggle required each round

vsetvli    zero, a4, e8, m1, ta, ma # AVL=32, SEW=8

vrgather.vv v25, v24, v8 # shuffle bytes

vsetivli zero, 8, e32, m1, ta, ma # AVL=8, SEW=32

vaesem.vv v25, v10 # 2×128b AES

vsetvli    zero, a4, e8, m1, ta, ma # AVL=32, SEW=8

vrgather.vv v24, v25, v8 # shuffle bytes

vsetivli zero, 8, e32, m1, ta, ma # AVL=8, SEW=32

vaesem.vv v24, v11 # 2×128b AES
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Encrypt and decrypt 1024 bytes this way

=== AES-256 ===

aes256_exp_key():  ins=    58  cyc=  ?

aes256_enc(1024):  ins=   775  cyc=  ?

aes256_dec(1024):  ins=   775  cyc=  ?

=== Rijndael-256 ===

rij256_exp_key():  ins=   123  cyc=  ?

rij256_enc(1024):  ins=  2059  cyc=  ?

rij256_dec(1024):  ins=  2059  cyc=  ?
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This is already “constant time”

The vrgather.vv instruction is “half constant-time” in the sense that under Zvkt 
the latency does not depend on the data being permuted.

However latency can depend on the permutation, but that is constant.
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Some Proposals for Consideration

1. With SEW=64 the AES instructions become Rijndael-256 Instructions.
vaesef.[vv,vs], vaesem.[vv,vs], vaesdf.[vv,vs], vaesdm.[vv,vs], vaeskf2.vi

2. Allow the same AES instructions with SEW=8, eliminating SEW toggling.

3. Modify vaeskf2.vi definition to support additional round constants.

4. Insert a hint into vrgather instruction for the special Rijndael-256 
encryption and decryption permutations and “hardwire” them.

12


