“A wider variant of AES”
Rijndael-256 and RISC-V Crypto ISA

Markku-Juhani O. Saarinen

<markku-juhani.saarinen@tuni.fi>

January 16, 2025 r

RISC-V Cryptography SIG =] Tempereen yiiopisto
Tampere University

b4 RISC

https://csrc.nist.gov/pubs/sp/800/197/iprd

NIST SP 800-197 (Initial Preliminary Draft)

PRE-DRAFT Call for Comments: NIST Proposes to Standardize a Wider Variant of AES

f ¥ in &

Date Published: December 23, 2024
Comments Due: June 25,2025
Email Comments to: ciphermodes@nist.gov

Author(s)

National Institute of Standards and Technology

Announcement

The Advanced Encryption Standard (AES) specifies a subset of the Rijndael block cipher family with 128-bit blocks that was
submitted to the NIST AES development effort. While this block size remains sufficient for many applications, the increasing demand
for processing large volumes of data highlights the potential advantages of a larger block size. This need was pointed out in the
public comments received for (Special Publication) SP 800-38A, acknowledged in NIST Internal Report 8459, and further reinforced
during two NIST public workshops on block cipher modes of operation.

In August 2024, NIST indicated its interest in vetting another Rijndael variant for approval: Rijndael with 256-bit blocks (i.e.,
Rijndael-256) with a single key size of 256-bits. NIST plans to develop a draft standard for Rijndael-256 over the next year and
requests public comments on this plan by June 25, 2025, especially for the following categories:

¢ Security analysis, including any new cryptanalytic results related to the 256-bit block size
« Performance and efficiency, particularly in environments with hardware support for AES

DOCUMENTATION

Publication:
No Download Available

Supplemental Material:
None available

Document History:
12/23/24: SP 800-197 (Draft)

TOPICS

Security and Privacy
encryption

Activities and Products
standards development

https://csrc.nist.gov/pubs/sp/800/197/iprd

Rijndael-256 Specs & Implementation

- The original 1990s Rijndael proposal allowed block

size and key to independently be { 128, 192, 256 }
bits.

TheDeS|g
of Rijndael

The Advanced Encryption Standard
(AES)

-l used these to verify that my RISC-V implementation Second Edition
with current Zvkned should be correct. See:

https://github.com/mjosaarinen/rij256-rv/

- The non-AES variants were largely ignored for over 20
years. Appendices B.3 and C of the Rijndael book (<)
has some test vectors and reference code for them.

@ Springer

https://github.com/mjosaarinen/rij256-rv/

Rijndael-256 vs AES-256

- Rijndael-256 has 14 rounds and 14+1=15 round keys (same as AES-256).

- The key schedule of Rijndael-256 is the same as AES-256, except that more
round constants are used. For a given key K, AES-256 round keys 1..14 match
Rijndael-256 expanded key material for rounds 1..7.

Only Rijndael-256 ShiftRows() differs from 2 x AES parallel round steps:

- SubBytes(): 32 S-Box byte substitutions, independent of each others.

- ShiftRows(): 4 rows of 8 bytes, rotated left by { 0, 1, 3, 4 } positions.

- MixColumns(): 8 columns (32-bit chunks). Same linear operation as in AES.
- AddRoundKey(): A 32 byte-XOR with the round kys.

34.3. Instructions | Page 531
34.3.6. vaeskf2.vi

Synopsis

Vector AES-256 Forward KeySchedule generation

Mnemonic

vaeskf2.vi vd, vs2, uimm
Encoding

31 26 25 24 20 19 15 14 12 1 7 6 0

101010 1 vs2 uimm OPMVV vd OP-VE

Reserved Encodings

® SEw is any value other than 32

This is fine for Rijndael-256 except that we now need more round constants:

The round number, which ranges from 2 to 14, comes from uvimm[3:0]; vimm[4] is ignored. The out-of-
range vimm[3:0] values of 0-1 and 15 are mapped to in-range values by inverting vimm[3]. Thus, 0-1
maps to 8-9, and 15 maps to 7.

Only ShiftRows() mixes 128-bit “lanes” (1)

N SN N N

(

W N B O
N O il B

5 9

(14 18
(19 23

3
9
10
11

13
22
27

12
13
14
15

12
17
26
31

16
17
18
19

16
21
30

3

20
21
22
23

20
25
2
7

24
25
26
27

24
29

6
11

28
29
30
31

28

1
10
15

SN’ N N NS

N N N NS

Input: Bytes 0,1,2,..., 31.

II/

Bytes are ordered “column first

Rijndael-256 ShiftRows():

Entire row rotated left by 1
Entire row rotated left by 3
Entire row rotated left by 4

Only ShiftRows() mixes 128-bit “lanes” (2)

(
(
(
(

N SN N N

O 4 8 12
5 913 1
10 14 2 6
15 3 7 11

O 4 8 12
5 913 17
14 18 22 26
19 23 27 31

16
21
26
31

16
21
30

3

20
25
30
19

20
25
2
7

24
29
18
23

24
29

6
11

28
17
22
27

28

1
10
15

SN’ N N S

N N N NS

2 x parallel AES ShiftRows():

Half-rows rotated left by 1
Half-rows rotated left by 2
Half-rows rotated left by 3

Rijndael-256 ShiftRows():
Entire row rotated left by 1

Entire row rotated left by 3
Entire row rotated left by 4

/vkned: Each round vrgather.vv and vaes .vv

- Before each round, permutate 32 bytes with vrgather.vy, indices:
{ o, 17, 22, 23, 4, 5, 26, 27, 8, 9, 14, 31, 12, 13, 18, 19,
16, 1, 6, 7, 20, 21, 10, 11, 24, 25, 30, 15, 28, 29, 2, 3 };

- “Undoes” 2 x parallel AES-128 ShiftRows(), then the Rijndael-256 ShiftRows.
- vaesem.vv: SubBytes() > ShiftRows() > MixColumns() > AddRoundKey()

- I've implemented and tested this; having the same round keys in encryption
and decryption still works (no need to shuffle round keys.)

https://github.com/mjosaarinen/rij256-rv/

https://github.com/mjosaarinen/rij256-rv/

Annoying SEW toggle required each round

vsetvli
vrgather.vv
vsetivli
vaesem.vv

vsetvli
vrgather.vv
vsetivli
vaesem.vv

zero, a4, eS8,
v25, v24, v8
zero, 8, e32,
v25, v10

zero, a4, es8,
v24, v25, v8
zero, 8, e32,
v24, vll

ml,

ml,

ml,

ml,

ta,

ta,

ta,

ta,

ma

ma

ma

ma

H H H

H H H R

AVL=32, SEW=8
shuffle bytes
AVL=8, SEW=32
2x128b AES

AVL=32, SEW=8
shuffle bytes
AVL=8, SEW=32
2x128b AES

Encrypt and decrypt 1024 bytes this way

=== AES-256 ===

aes256 exp key(): ins= 58
aes256 enc(1024): ins= 775
aes256 dec(1024): ins= 775

=== Rijndael-256 ===

rij256 exp key(): ins= 123
rij256 enc(1024): ins= 2059
rij256 _dec(1024): ins= 2059

cyc=
cyc=
cyc=

cyc=
cyc=
cyc=

10

This is already “constant time”

The vrgather.vv instruction is “half constant-time” in the sense that under Zvkt
the latency does not depend on the data being permuted.

However latency can depend on the permutation, but that is constant.

34.2.15.12. permute

In the .vv and .xv forms of the vrgather[eilé] instructions, the values in vs1 and rs1 are used for control
and therefore are exempt from DIEL.

® yrgather.v[ivx]

® yrgathereil6.vv

11

Some Proposals for Consideration

1. With SEW=64 the AES instructions become Rijndael-256 Instructions.

vaesef.[vv,vs], vaesem.[vVv,Vvs], vaesdf.[vv,vs], vaesdm.[vv,vs], vaeskf2.vi

2. Allow the same AES instructions with SEW=8, eliminating SEW toggling.
3. Modify vaeskf2.vi definition to support additional round constants.

4. Insert a hint into vrgather instruction for the special Rijndael-256
encryption and decryption permutations and “hardwire” them.

12

