RISC-V
4d SUMMIT

X

PQCP Support for RISC-V
Vector, Future Keccak ISE

Markku-Juhani O. Saarinen
Cryptography SIG Chair

N, =

1=
[+

lm-ag] &
=
- I '.)/,/
lr \ N
jo-o .

N, =

1=
lr \

RISC-V
:’A SUMMIT

Post-Quantum Cryptography (PQC) Standards

Main NIST Standards (ratified in August 2024)

* FIPS 203: ML-KEM ("Kyber") Key Establishment — already widely in TLS

* FIPS 204: ML-DSA ("Dilithium") Digital Signature — coming into PKI

* FIPS 205: SLH-DSA ("SPHINCS+") Digital Signature — hash-based
Additional Standards Coming

* FIPS 206: FN-DSA (Falcon) draft expected soon — smaller signatures

* HQC-KEM standardization in progress

Other efforts

* NIST additional signatures competition: 14 candidates in round 2

* |SO/IEC 18033-2 with PQC (Likely: Classic McEliece, FrodoKEM, ML-KEM)

:" RISC-V

CNSA 2.0 = PQC / National Security Systems (NSS)

and intent of this policy is to complete transition by 2035 as stated in NSM-10, National Security
Memorandum on Promoting United States Leadership in Quantum Computing While Mitigating
Risks to Vulnerable Cryptographic Systems, (Reference e) and to promote adoption of CNSA 2.0
algorithms as rapidly as standardization, production, and validation allows. While products
incorporating validated implementations of CNSA 2.0 are tg be preferred CNSA 1 0 aloorithms
3 otable in all prog Q1o B her 20 Beginning 1 January 2027, unless
otherwise excepted through public messaging on nsa.gov, protection profile, capabilities
package, or waived through the waiver process, CNSA 2.0 algorithms will be required in all new
products and services that provide cryptographic protection for users or for updates. JUSEIEHG
such an exception, equipment and services which cannot or will not be updated to CNSA 2.0
algorithms must be phased out and replaced with equipment or services which support CNSA 2.0
algorithms by 31 December 2030. CNSA 2.0 algorithms are to be preferred in protocol
negotiations once compatible equipment i1s deployed. CNSA 2.0 algorithms are mandated for all
protocol use by 31 December 2031, unless excepted as noted above or waived through the

wailver process.

CNSA 2.0 includes ML-KEM-1024, ML-DSA-87 and older hash-
based LMS and XMSS. No RSA, DL, or Elliptic Curve Crypto.

European PQC Transition

RISC-V
:’A SUMMIT

On 23 June 2025, EU member states & © Timeline for the transition to PQC

Commission issued a "coordinated
roadmap" for PQC transition.

This policy asks for European cyber
standardization (Cyber Resilience
Act, CRA etc) to enforce transition.

Software updates, “High-risk
cases’ before the end of 2030.

Rest before the end of 2035.

1.

By 31.12.2026:

* At least the First Steps have been implemented by all Member States.

Initial national PQC transition roadmaps have been established by all Member
States.

» PQCtransition planning and pilots for high- and medium-risk use cases have been

2.

initiated.
By 31.12.2030:

* The Next Steps have been implemented by all Member States.

« The PQC transition for high-risk use cases has been completed.

PQC transition planning and pilots for medium-risk use cases have been com-
pleted.

* Quantum-safe software and firmware upgrades are enabled by default.

By 31.12.2035:

« The PQC transition for medium-risk use cases has been completed.

* The PQC transition for low-risk use cases has been completed as much as feasible.

Reality Oct 2025: Almost 50% of non-bot HTTPS is PQC K% sUvwit

NORTH AMERICA 2025

Post-quantum encryption adoption worldwide © JIR = Ems
Post-quantum encrypted share of human HTTPS request traffic

amazon.com
e Post-quantum encrypted Q

471%
100% < Connection is secure
90%
80% @
70%
o Certificate information
W e~ —— o —— — T
40% S o
30%
20%

Wed, Oct 8, 00:00 Thu, Oct 9, 00:00 Fri, Oct 10, 00:00 Sat, Oct 11, 00:00 Sun, Oct 12, 00:00 Mon, Oct 13, 00:00 Tue, Oct 14, 00:00

Cloudflare Radar Last 7 days | Oct 14, 2025, 16:45 UTC

* Google transitioned the Chrome browser and their services last year.
* Cloudflare (fronts a lot of big sites), Apple, Amazon have also transitioned.

* This is almost entireli X25519MLKEM768 hibrid TLS 1.3 ciiher suite.

RISC-V

PQCP: Post-Quantum Code Package R stwiviT

A Post-Quantum Cryptography Alliance (PQCA) effort (Linux Foundation)

Mission: High-speed, high-assurance implementations of NIST-
standardized post-quantum cryptographic algorithms

Focus: Production-ready code with rigorous security analysis
* Constant time, High-assurance implementations
* Multiple languages, platforms

* Liberally licensed: Default is Apache 2.0 (mlkem-native/mildsa-native:
Apache-2.0 or ISC or MIT)

Projects:
mlkem-native, mldsa-native, slhdsa-c, mlkem-libjade, mlkem-rust-libcrux

RISC-V
:’A SUMMIT

mlkem-native: governance & maintenance

Linux Foundation

Post-Quantum Cryptography Alliance (PQCA)

Post-Quantum Code Open Quantum
Package (PQCP) Safe
mlkem-native] libogs

mldsa-native

https://qithub.com/pg-code-package/mlkem-native
Maintainers: Hanno Becker (AWS), Matthias Kannwischer (Chelpis)

https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native

RISC-V
:’A SUMMIT

ML-KEM: computationally

Key: Batching of independent instances

|

O(ML-KEM) =~ @(SHA3/SHAKE) + @(Fas0[x]/ (2% + 1))

Key:
= Modular arithmetic mod 3329
= Avoiding modular reduction

= Number-theoretic transform

RISC-V
:’A SUMMIT

mlkem-native: research and optimizations

Time-vetted, 'clean’ Optimization, verification, ...

ML-KEM ref —
: re er.ence Research on ML-KEM
implementation

a

mlkem-native

S Q 2 4

R O

((

https://qithub.com/pg-code-package/mlkem-native

https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native

:" RISC-V

mlkem-native: consumers SUMMIT

libOQS of the Open Quantum Safe project
* Since version 0.13.0 (as the default ML-KEM implementation)
e https://github.com/open-quantum-safe/libogs

AWS-LC - AWS’ Cryptography library
* Since version v1.50.0 https://github.com/aws/aws-Ic

rustls - TLS library written in Rust
* Since version 0.23.28 (through AWS-LC as the default provider)
e https://qithub.com/rustls/rustls

https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/aws/aws-lc
https://github.com/aws/aws-lc
https://github.com/aws/aws-lc
https://github.com/rustls/rustls
https://github.com/rustls/rustls

RISC-V
:’A SUMMIT

mlkem-native: modularity

relies on

(C90/ASM)

Ca0 x86_ 64 AArch64

Ca0 x86_64 AArch64 RV64

FIPS 202 < FIPS 203
| Frontend
SHAKE SHA-3 i ML-KEM high-level logic (C90)
........................ 5
Keiiak_ Keiiak‘ Kei‘f’k' : NTT NTT NTT NTT i!n_)
Keccak- Keccak- Keccak- : Sampling Sampling Sampling Sampling 4 8
- - - ! Backend

RISC-V
:’A SUMMIT

Cycles (LLVM 22, X60 core: RVA 22, VLEN=256)

B Intrinsics [Autovec No vector

ML-KEM-512 Keypair =

ML-KEM-512 Encaps =

ML-KEM-512 Decaps =

ML-KEM-768 Keypair =

ML-KEM-768 Encaps =

ML-KEM-768 Decaps =
ML-KEM-1024 Keypair =
ML-KEM-1024 Encaps =
ML-KEM-1024 Decaps =

0 250000 500000 750000 1000000

Function

RISC-V
:’A SUMMIT

Autovectorization doubles speed, w. Intrinsics 2.4x

» Using intrinsics + autovectorization means 2.42x (clang) or 2.18x
(gcc) speedup over not using vector instructions.

* Intrinsics give a 28% (clang) or 48% (gcc) speedup
over autovectorization.

« LLVM 22git autovectorization is 29% faster than GCC 14.2.1
autovectorization. (Compile flags: -03 -march=rvé64gcv)

« With plain RV64GC ISA (-03 -march=rvé4gc), the two compilers
perform roughly the same on a pure C implementation..

* OpenSSL (m1_kem.c) and Google's BoringSSL (kyber.cc)
seem to rely on autovectorization alone.

:" RISC-V

mlkem-native: formal verification SUMMIT

Goal: Type-safety and memory-safety (no overflows)

Tool: C Bounded Model Checker (CBMC)
https://github.com/diffblue/cbmc

Approach: Automatic proofs from per-function in-source contracts,
invariants, bounds

Coverage: All C code

Continuous Integration: Runs on every change (~15 min /
parameter set)

Note: Assembler backends (ARM, x86) also use HOL-Light for
proofs that the implementation matches a mathematical model.

https://github.com/diffblue/cbmc

RISC-V

mlkem-native: timing attack protection R% SUmmiT

All code in mlkem-native Is written with constant-time in mind:
* No secret-dependent branches or memory accesses

No variable-time instructions

» Value-barriers preventing harmful compiler optimizations

« Barriers allow inlining critical functions and link-time optimization
(But we can't make assumptions about consumer's optimization flags..)

Use valgrind to test for violations:
* Will catch violations of RISC-V DIEL (Zkt and Zvkt extensions.)

RISC-V
:’A SUMMIT

Sister project: mldsa-native

https://github.com/pg-code-package/mldsa-native
mldsa-native: High-speed, high-assurance C90/assembly ML-DSA
Goal: Same high-assurance approach as mlkem-native for digital signatures

Current Status:

* CBMC proofs - Complete for frontend and C backend

* Constant-time hardening & testing - Value barriers

* CI - Testing infrastructure almost on par with mlkem-native

* Configuration support - Most mlkem-native configuration options supported
* Backends: x86 64, AArch64 for most essential functions (not complete yet)

https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native

RISC-V

PQC Task Group: Keccak instruction proposal R SUnwiiT

* These implementations >50% of cycles on the Keccak 1600
permutation used by SHA3 / SHAKE, which vectorizes poorly.

 The main PQC TG proposal remains a Keccak instruction:
Doubles not only ML-KEM but also ML-DSA (signing) speed.

Theta: Linear Mixing B(A) Rho: Word Rotations p(A) Pi: Word Permutation mm(A) Chi: Nonlinear "S-Boxes" ¥(A)

B RIS o 78 Yy e
IR EmEEE (b / =7 m e
I B N s o e = e 1\/// 1'3% 5/ I ——
Ol (B@REEE A/ e *’TM L= ——
1L d = e e e “ /_14_151 1 ea—————

HW Cost: Two XORs/bit, routing. HW Cost: Just wires. HW Cost: Just wires. HW Cost: One ANDN / bit, routing.

:" RISC-V

SUMMIT

PQC TG: Keccak instruction

Architecturally unusual:

* Performs the 1600-bit Keccak permutation with 1 instruction.

* Needs to read/write a register group containing 25 x 64-bit words.
» But provides incredible speedup, from ~2000 cycles down to ~40.
* Much faster than "partial" SHAS instructions on ARM ISA.

Current status:
« Has spike, benchmarks (for a while now). But no HW PoC yet.
» Spec + Internal review scheduled before the end of the year.

:" RISC-V

SUMMIT

Future Work

PQCP Findings and ML-KEM RISC-V status:

» Autovectorization alone gives lattice PQC 2% boost, vector
intrinsics for NTT and other key steps: additional +30% or +40%

 NTT probably needs to be factored for different hardware VLEN
values (128, 256, 512, 1024, others?)

* We should also add "parallel" Keccak (using Zvbb).

PQ Task Group and the Keccak instruction:
* Needs a hardware PoC for the highly effective Keccak instruction.

» RISC-V
d SUMMIT

	Slide 1: PQCP Support for RISC-V Vector, Future Keccak ISE
	Slide 2: Post-Quantum Cryptography (PQC) Standards
	Slide 3: CNSA 2.0 = PQC / National Security Systems (NSS)
	Slide 4: European PQC Transition
	Slide 5: Reality Oct 2025: Almost 50% of non-bot HTTPS is PQC
	Slide 6: PQCP: Post-Quantum Code Package
	Slide 7: mlkem-native: governance & maintenance​
	Slide 8: ML-KEM: computationally
	Slide 9: mlkem-native: research and optimizations
	Slide 10: mlkem-native: consumers
	Slide 11: mlkem-native: modularity
	Slide 12: Cycles (LLVM 22, X60 core: RVA 22, VLEN=256)
	Slide 13: Autovectorization doubles speed, w. Intrinsics 2.4x
	Slide 14: mlkem-native: formal verification
	Slide 15: mlkem-native: timing attack protection
	Slide 16: Sister project: mldsa-native
	Slide 17: PQC Task Group: Keccak instruction proposal
	Slide 18: PQC TG: Keccak instruction
	Slide 19: Future Work
	Slide 20

