
PQCP Support for RISC-V
Vector, Future Keccak ISE

Markku-Juhani O. Saarinen

Cryptography SIG Chair

Post-Quantum Cryptography (PQC) Standards

Main NIST Standards (ratified in August 2024)

• FIPS 203: ML-KEM ("Kyber") Key Establishment – already widely in TLS

• FIPS 204: ML-DSA ("Dilithium") Digital Signature – coming into PKI

• FIPS 205: SLH-DSA ("SPHINCS+") Digital Signature – hash-based

Additional Standards Coming

• FIPS 206: FN-DSA (Falcon) draft expected soon – smaller signatures

• HQC-KEM standardization in progress

Other efforts

• NIST additional signatures competition: 14 candidates in round 2

• ISO/IEC 18033-2 with PQC (Likely: Classic McEliece, FrodoKEM, ML-KEM)

CNSA 2.0 = PQC / National Security Systems (NSS)

CNSA 2.0 includes ML-KEM-1024, ML-DSA-87 and older hash-
based LMS and XMSS. No RSA, DL, or Elliptic Curve Crypto.

European PQC Transition

On 23 June 2025, EU member states &
Commission issued a "coordinated
roadmap" for PQC transition.

This policy asks for European cyber
standardization (Cyber Resilience
Act, CRA etc) to enforce transition.

Software updates, “High-risk
cases” before the end of 2030.

Rest before the end of 2035.

Reality Oct 2025: Almost 50% of non-bot HTTPS is PQC

• Google transitioned the Chrome browser and their services last year.

• Cloudflare (fronts a lot of big sites), Apple, Amazon have also transitioned.

• This is almost entirely X25519MLKEM768 hybrid TLS 1.3 cipher suite.

PQCP: Post-Quantum Code Package

A Post-Quantum Cryptography Alliance (PQCA) effort (Linux Foundation)

Mission: High-speed, high-assurance implementations of NIST-
standardized post-quantum cryptographic algorithms

Focus: Production-ready code with rigorous security analysis

• Constant time, High-assurance implementations

• Multiple languages, platforms

• Liberally licensed: Default is Apache 2.0 (mlkem-native/mldsa-native:
Apache-2.0 or ISC or MIT)

Projects:

mlkem-native, mldsa-native, slhdsa-c, mlkem-libjade, mlkem-rust-libcrux

mlkem-native: governance & maintenance​

https://github.com/pq-code-package/mlkem-native

Maintainers: Hanno Becker (AWS), Matthias Kannwischer (Chelpis)

https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native

ML-KEM: computationally

mlkem-native: research and optimizations

https://github.com/pq-code-package/mlkem-native

https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native
https://github.com/pq-code-package/mlkem-native

mlkem-native: consumers

libOQS of the Open Quantum Safe project

• Since version 0.13.0 (as the default ML-KEM implementation)

• https://github.com/open-quantum-safe/liboqs

AWS-LC - AWS’ Cryptography library

• Since version v1.50.0 https://github.com/aws/aws-lc

rustls - TLS library written in Rust

• Since version 0.23.28 (through AWS-LC as the default provider)

• https://github.com/rustls/rustls

https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/aws/aws-lc
https://github.com/aws/aws-lc
https://github.com/aws/aws-lc
https://github.com/rustls/rustls
https://github.com/rustls/rustls

mlkem-native: modularity

Cycles (LLVM 22, X60 core: RVA 22, VLEN=256)

Autovectorization doubles speed, w. Intrinsics 2.4x

• Using intrinsics + autovectorization means 2.42x (clang) or 2.18x
(gcc) speedup over not using vector instructions.

• Intrinsics give a 28% (clang) or 48% (gcc) speedup
over autovectorization.

• LLVM 22git autovectorization is 29% faster than GCC 14.2.1
autovectorization. (Compile flags: -O3 -march=rv64gcv)

• With plain RV64GC ISA (-O3 -march=rv64gc), the two compilers
perform roughly the same on a pure C implementation..

• OpenSSL (ml_kem.c) and Google's BoringSSL (kyber.cc)
seem to rely on autovectorization alone.

mlkem-native: formal verification

Goal: Type-safety and memory-safety (no overflows)

Tool: C Bounded Model Checker (CBMC)
https://github.com/diffblue/cbmc

Approach: Automatic proofs from per-function in-source contracts,
invariants, bounds

Coverage: All C code

Continuous Integration: Runs on every change (~15 min /
parameter set)

Note: Assembler backends (ARM, x86) also use HOL-Light for
proofs that the implementation matches a mathematical model.

https://github.com/diffblue/cbmc

mlkem-native: timing attack protection

All code in mlkem-native is written with constant-time in mind:

• No secret-dependent branches or memory accesses

• No variable-time instructions

• Value-barriers preventing harmful compiler optimizations

• Barriers allow inlining critical functions and link-time optimization
(But we can't make assumptions about consumer's optimization flags..)

Use valgrind to test for violations:

• Will catch violations of RISC-V DIEL (Zkt and Zvkt extensions.)

Sister project: mldsa-native

https://github.com/pq-code-package/mldsa-native

mldsa-native: High-speed, high-assurance C90/assembly ML-DSA

Goal: Same high-assurance approach as mlkem-native for digital signatures

Current Status:

• CBMC proofs - Complete for frontend and C backend

• Constant-time hardening & testing - Value barriers

• CI - Testing infrastructure almost on par with mlkem-native

• Configuration support - Most mlkem-native configuration options supported

• Backends: x86_64, AArch64 for most essential functions (not complete yet)

https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native
https://github.com/pq-code-package/mldsa-native

PQC Task Group: Keccak instruction proposal

• These implementations >50% of cycles on the Keccak f1600
permutation used by SHA3 / SHAKE, which vectorizes poorly.

• The main PQC TG proposal remains a Keccak instruction:
Doubles not only ML-KEM but also ML-DSA (signing) speed.

PQC TG: Keccak instruction

Architecturally unusual:

• Performs the 1600-bit Keccak permutation with 1 instruction.

• Needs to read/write a register group containing 25 × 64-bit words.

• But provides incredible speedup, from ~2000 cycles down to ~40.

• Much faster than "partial" SHA3 instructions on ARM ISA.

Current status:

• Has spike, benchmarks (for a while now). But no HW PoC yet.

• Spec + Internal review scheduled before the end of the year.

Future Work

PQCP Findings and ML-KEM RISC-V status:

• Autovectorization alone gives lattice PQC 2× boost, vector
intrinsics for NTT and other key steps: additional +30% or +40%

• NTT probably needs to be factored for different hardware VLEN
values (128, 256, 512, 1024, others?)

• We should also add "parallel" Keccak (using Zvbb).

PQ Task Group and the Keccak instruction:

• Needs a hardware PoC for the highly effective Keccak instruction.

	Slide 1: PQCP Support for RISC-V Vector, Future Keccak ISE
	Slide 2: Post-Quantum Cryptography (PQC) Standards
	Slide 3: CNSA 2.0 = PQC / National Security Systems (NSS)
	Slide 4: European PQC Transition
	Slide 5: Reality Oct 2025: Almost 50% of non-bot HTTPS is PQC
	Slide 6: PQCP: Post-Quantum Code Package
	Slide 7: mlkem-native: governance & maintenance​
	Slide 8: ML-KEM: computationally
	Slide 9: mlkem-native: research and optimizations
	Slide 10: mlkem-native: consumers
	Slide 11: mlkem-native: modularity
	Slide 12: Cycles (LLVM 22, X60 core: RVA 22, VLEN=256)
	Slide 13: Autovectorization doubles speed, w. Intrinsics 2.4x
	Slide 14: mlkem-native: formal verification
	Slide 15: mlkem-native: timing attack protection
	Slide 16: Sister project: mldsa-native
	Slide 17: PQC Task Group: Keccak instruction proposal
	Slide 18: PQC TG: Keccak instruction
	Slide 19: Future Work
	Slide 20

